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Translational Mechanical System Transfer Functions

Component Force–displacement G (s)
Spring f (t) = K x K

Viscous damper f (t) = b
dx(t)
dt

b s

Mass f (t) = M
d2x(t)
dt2

M s2

[f (t)] = N (newtons),
[x(t)] = m (meters),
[v(t)] = m/s (meters/second),

[K ] = N/m (newtons/meter),
[b] = N s/m (newton.seconds/meter),
[M] = kg (kilograms).

K

Spring

x(t)
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b

Viscous damper
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f(t)M
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Transitional Mechanical Systems 

 Mechanical movements in a  straight line (i.e.
linear motion) are called “transitional”

 Basic Blocks are: Dampers, Masses, and Springs

 Springs represent the stiffness of the system

 Dampers (or dashpots) represent the forces
opposing to the motion (i.e. friction)

 Masses represent the inertia

maF

cvF

kxF







Force 

displacement 

velocity 

accelerationmass 
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Transitional Mechanical Systems 

 Equations for mechanical systems are based on
Newton Laws

 Free body diagram

dt

dx
c-kx-Fma 

Mass 
Force 

Spring 

Damper 
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Example: Mass-Spring-Damper 

Note:    D is Differentiation            
1/D is Integration 
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Example: Two-Mass Mechanical System 
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Example: Two-Mass Mechanical System 
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Example: Mechanical Model 

 Consider a two carriage train system

22122

12111

xc-)x-k(xxm

xc-)x-k(x-fxm








Mass 1 Force 

k(x1-x2) 

c v1 

x1 

Mass 2 
k(x1-x2) 

c v2 

x2 
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Example continued 

 Taking the Laplace transform of the equations
gives

(s)csX-(s))X-(s)k(X(s)Xsm

(s)csX-(s))X-(s)k(X-F(s)(s)Xsm

2212
2

2

1211
2

1





 Note: Laplace transforms the time domain problem into s-domain
(i.e. frequency)

 

  sX(s)(t)xL

x(t)dteX(s)x(t)L
0

st
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Example continued 

 Manipulating the previous two equations, gives the
following transfer function (with F as input and V1
as output)

    2kcsckmkmsmmcsmm

kcssm

F(s)

(s)V
2

21
2

21
3

21

2
21






 Note: Transfer function is a frequency domain equation that gives
the relationship between a specific input to a specific output
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Example continued 

 Simulation using MATLAB

m1= 5; m2=0.7; k=0.8; c=0.05; 

num=[m2 c k]; 
den=[m1*m2 c*m1+c*m2 k*m1+k*m2+c*c 2*k*c];
sys=tf(num,den); % constructs the transfer function 

figure; impulse(sys); % plots the impulse response 
grid on, box on;

figure; step(sys);  % plots the step response 
grid on, box on;

figure; bode(sys); % plots the Bode plot 
grid on, box on;
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Example continued: Impulse response 
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Example continued: Step response 
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Example continued: Bode Plot 
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Example: Motion of Aircraft 
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Rotational Mechanical System Transfer Functions

Transfer functions of basic components

Component Torque–angular displacement G (s)
Spring T (t) = K θ(t) K

Viscous damper T (t) = D
dθ(t)
dt

b s

Inertia T (t) = J
d2θ(t)
dt2

J s2

[T (t)] = Nm (newtons.meters),
[θ(t)] = rad (radians),
[ω(t)] = rad/s (radians/second),

[K ] = Nm/rad (newtons.meter/rad),
[D] = N m s/rad (newton.meter.seconds/rad),
[J] = kg m2 (kilograms.meter2).
Z = Rotational mechanical impedances

K

Spring

T(t) (t)θ

D

Viscous

damper
T(t) (t)θ

J

Inertia

T(t) (t)θ

Transfer functions for systems with gears

θ2
θ1

=
r1

r2
=

N1

N2
,

T2

T1
=

θ1
θ2

=
N2

N1
,

Z2

Z1
=

[

N2

N1

]2

r2

input gear

r1

N1

N2
T1(t) θ1(t) T2(t)θ2(t)

output gear
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Rotational Mechanical Systems 

 Consider a mechanical system that involves
rotation

•The torque, T, replaces the force, F

•The angle, q, replaces the displacement x

•The angular velocity, w , replaces velocity v

•The angular acceleration, a, replaces the acceleration a

•The moment of inertia J, replaces the mass m

Torque, T 

Shaft 

Side View 

T 

q 

w  dq/dt

J dw/dt    kq  cw 

Top View 
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Rotational Mechanical Systems 

 The mechanics equation becomes

2

2

dt

θd
J

dt

dθ
ckθT

JαcωkθT 





angular 
acceleration 

moment of 
inertia 

angular 
velocity 

Torque 

angle 

damper 
coefficient 

spring 
coefficient 
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Example: Rotational-Transitional System 

 Consider a rack-and-pinion system. The rotational motion
of the pinion is transformed into transitional motion of
the rack

ωc
dt

dω
JTT      1outin 

For simplicity, the spring effects are ignored 

Tin

w 

v 

r 

F 

pinion 

rack 
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Example continued 

The rotational equation is 

The transitional equation is 
dt

dv
mvcF      2 

ωc
dt

dω
JTT      1outin 

v/rω
rFTout


Using the equations 

And manipulating the rotational 
and transitional equations 
with the input torque, Tin, as 
inputs and velocity, v, as 
output, we get 

 
dt

dv
mr

r
Jvrc

r
c

T 2
1

in 
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Example continued 

Let us take a look at the state 
space equations 

In general, 
DuBxy

CuAxx




where x is the states vector, y is 
the output vector, and u is the 
input vector 

In our example, we will 

use the states: w and v,  

the inputs: Tin and F 

the output: v 

Manipulating the equations 
in the previous slide, we get 
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Conversion: Transitional and Rotational 
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Gear Trains 
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Gear Trains 

where 
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Electrical Network Transfer Functions

Transfer functions of basic components

Symbol Component Voltage–current G (s)

Capacitor v(t) = 1
C

∫ t

0
i(τ)dτ 1

Cs

Resistor v(t) = R i(t) R

Inductor v(t) = L
di(t)
dt

Ls

Transfer functions of operational amplifiers
◮ inverting operational amplifier: G(s) = Vo (s)

Vi (s)
= Z2(s)

Z1(s)

◮ noninverting operational amplifier: G(s) = Vo (s)
Vi (s)

= Z1(s)+Z2(s)
Z1(s)

Vi(s)

Vo(s)

Z1(s)

Z2(s

+

–

)

–

+

Z2(s)

Z1(s)

V
i
(s)

V
o
(s)

inver�ng
OpAmp noninver�ng

OpAmp
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Electrical Systems: Basic Equations 

 Resistor

 Ohm’s Law 

 Inductor

 Capacitor

dt

dV
Ci

idt
C

1
V

dt

di
LV

RiV











Voltage 

current 

Resistance 

Inductance 

Capacitance 

Power = Voltage x Current 
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Kirchoff Laws 

 Equations for electrical systems are based on
Kirchoff’s Laws

1. Kirchoff current law:
Sum of Input currents at node = Sum of output currents 

2. Kirchoff voltage law:
Summation of voltage in closed loop equals zero 
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Example: RLC circuit 

 idt
C

1

dt

di
LRiV cV

dt

di
LRiV 

dt

dV
Ci c c2

c
2

c V
dt

Vd
LC

dt

dV
RCV 

R 

V 
+ 
- 

L C 

+ VR  - +  VL  - 
+      Vc         -

i 

Or 

since Then 

A second order differential equation 

Using Kirchoff voltage law 
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RLC  MATLAB Code 

 R=1000000; % R = 1MW 
 L=0.001; % L=1 mH 

 C=0.000001; % C= 1mF

 num=1; den=[L*C R*C 1];

 sys=tf(num,den);

 bode(sys)

 Impulse(sys)

 Step(sys)
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RLC Simulation: Bode Plot 

At high frequency, Capacitor is short => Voltage = 0 

At DC (i.e. frequency = 0), Capacitor is open 
=> Voltage gain is 0dB (i.e. 1 V/V) 
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RLC Simulation: Impulse Response 

Input voltage is pulse => Capacitor stores energy 

And then releases the energy 
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RLC Simulation: Step Response 

At about 2.3 seconds, the capacitor 
Voltage becomes 90% of the 1 Volts 
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Op Amps 

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Mechatronic Systems Design 33 / 66



PM-DC Motor Modeling 

 The electrical equation is emfin V
dt

di
LRiV 

 The mechanical equation is loadTbω
dt

dω
JT 

Vin

R L i 

+ 
- Motor 

T 

w 

where Vemf (Back electromagnetic voltage) = k1w 

where T = k2i
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DC Motor Model: Block Diagram 

1/(Ls+R) 1/(Js+b) k2 

k1

+ + Vin 

Tload

w 

- 

- 

T
i 
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Simulation Result 
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Fluid Systems 

 Fluid systems can be divided into two categories:
 Hydraulic: fluid is a liquid and incompressible 

 Pneumatic: fluid is gas and can be compressed 

 The volumetric rate of flow, q, is equivalent to the current

 The pressure difference, P1-P2, is equivalent to voltage

 The basic building blocks for hydraulic systems are:
Hydraulic resistance, capacitance, and inertance
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Hydraulic resistance 

 Hydraulic resistance is the resistance to the fluid flow
which occurs as a result of valves or pipe diameter
changes

 The relationship between the volume rate of flow, q,  and
pressure difference, p1-p2 ,is given by Ohm’s law 

Rqpp 21 

p2
p1

pipe 

p1
p2

valve 
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Hydraulic Capacitance 

 Potential energy stored in a liquid such as height
of a liquid in a container

dt

dh
AqqAhV

dt

dV
qq

21

21





Volumetric 
rate of  
change 

Volume 
Change 

Cross sectional Area 
height

q1

q2

p1

p2

h 
A
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Hydraulic Capacitance 

hgρppp 21 

dt

dp

gρ
A

dt

gρ
p

d

Aq-q
dt

dh
Aqq 2121 










gρ
A

C 

dt

dp
Cqq 21 

density 

gravity height pressure 

By letting the hydraulic capacitance be 

We get 

 hgpA/VgpA/mgA/Fp Note that 
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Hydraulic Inertance 

 Equivalent to inductance in electrical systems

 To accelerate a fluid and increase its velocity a force is
required

Avq

ALρm

dt

dv
mmaFF 21





mass 

Length 

Cross sectional Area 

F2 = p2 A F1 = p1 A 

 AppFF 2121 

dt

dq
Ipp 21 

A

Lρ
I 

using 

Then Where the Inertance is 
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Hydraulic Example Modeling: 
an interactive 2-tank system 

h1(t) A1

A2

h2(t) 
q2(t) 

q1(t) 

qin(t) 

R2

R1

 

 
 

222

1211

221
2

11in
1

(t)/Rh(t)q

/R(t)h(t)h(t)q

/A(t)q(t)q
dt

dh

/A(t)q(t)q
dt

dh
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Hydraulic Example Modeling: Block Diagram 

1/A1

Sum Integrate Sum 1/R1 1/A2 Sum Integrate

1/R21/A21/A1

Input: qin

Output: q2

q1

- -

-
h1 

h2dh1/dt 
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Hydraulic Example: Simulation 

Input, qin,  is a step Output, q2, is taken 
to a virtual scope 
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Hydraulic Example: Simulation 
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Another Form of Analogies 
Potential and Flow Variables 

 When systems are in motion, the energy can be
 Increased by an energy-producing source outside the system 

 Redistributed between components within the system 

 Decreased by energy loss through components out of the 
system.  

 Therefore, a coupled system becomes synonymous
with energy transfer between systems.

Potential Variable = PV 

Flow Variable = FV 
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Analogies: FV and PV 

Flow Variable 

(FV) 

Potential Variable 

(PV) 

Electrical Current Voltage 

Mechanical Transitional Force Velocity 

Mechanical Rotational Torque Angular Velocity 

Hydraulic Volumetric Flow Rate Pressure 

Pneumatic Mass Flow Rate Pressure 

Thermal Heat Flow Rate Temperature 
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Which Analogies to use? 

 Force-Voltage makes more physical sense

 Graphical Representation: Bond Graphs 

 Force-Current makes mathematical sense

 Sum of Currents= Zero and Sum of Forces = Zero

 Graphical Representation: Linear Graphs 

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Mechatronic Systems Design 48 / 66



Conclusion 

 Mathematical Modeling of physical systems is an
essential step in the design process

 Simulation should follow the modeling in order to
investigate the system response

 Mechatronic systems involve different disciplines and
therefore an appropriate modeling technique to use is
block diagrams

 Analogies among disciplines can be used to simplify the
understanding of different dynamic behaviors
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Electromechanical System Transfer Functions
DC Motor with Load

ia(t)

V(t)

Ra

θm(t)

θL(t)

Fixed

f eld

N1

N2DaJa
JL

DL

+

–

ea(t)
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Electromechanical System Transfer Functions
DC Motor with Load

for a DC motor, mechanical and electrical equations are:

V = R i + L
di

dt
+ ea (1)

eb = Kt ω (2)

T = Kt i = Jm
dω

dt
+ Dm ω + B (3)

T motor torque
Kt torque constant
i current,
V supplied voltage,
ω rotor speed,
eb back-emf (eb = Keω),
R, L resistance and induction.

For a fixed voltage, torque–speed curves are derived from (3) & (1):

T =
kt

R
(V − Kt ω) =

kt

R
V − k

2
m ω (4)

◮ Km = kt
√

R
is the motor constant, [numerically, kt == ke ]

◮ slope of the torque–speed curves is −K
2
m.

◮ voltage-controlled DC motor has inherent damping in its mechanical behavior
◮ torque increases in proportion to applied voltage and reduces as ω increases.

Tm

V1

2

Tstall

T
o
rq
u
e

Speedωno-load
ωm

V

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Mechatronic Systems Design 51 / 66



Electromechanical System Transfer Functions
DC Motor with Load

Example

Given the DC motor with load system and torque-speed curve, find the transfer function, θL(s)/V (s).

Tm

ea =100 V

500

T
o
rq

u
e

(N
-m

)

50
Speed (rad/s)

ia(t)

V(t)

Ra

θm(t)

θL(t)

Fixed

f eld

N1 =100

N2 =1000

Da =2 N- m s/ rad

Ja =5 kg- m 2 JL =700 kg m 2

DL=800 N m s/ rad

ωm

+

–
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Electromechanical System Transfer Functions
DC Motor with Load

to get the transfer function, we combine Laplace transforms of (1) through (3) and simplifying:

θm(s)

V (s)
=

kt/(RaJm)

s

[

s + 1
Jm

(

Dm + KtKb

Ra

)] (5)

the total inertia and damping at the armature of the motor are:

Jm = Ja + JL

(

N1

N2

)2

= 5 + 700

(

1

10

)2

= 12

Dm = Da + DL

(

N1

N2

)2

= 2 + 800

(

1

10

)2

= 10

the electrical constants, Kt/Ra and Kb. From the torque-speed curve,

Tstall = 500, ωno−load = 50, V = 100
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Electromechanical System Transfer Functions
DC Motor with Load

Hence the electrical constants are:

Kt

Ra

=
Tstall

V
=

500

100
= 5, Kb =

V

ωno−load

=
100

50
= 2

Substituting system parameters into Eq.(5) yields:

θm(s)

V (s)
=

5/12

s
[

s + 1
12 (10 + 5× 2)

] =
0.417

s (s + 1.667)

to find the final transfer function (from the load–side, i.e. θL/V (s)), we use the gear ratio,
N1/N2 = 1/10, hence we get:

θL(s)

V (s)
=

0.0417

s (s + 1.667)
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Electromechanical System Transfer Functions
Car suspension system

Example

Develop a model of an automobile which would be appropriate for studying the effectiveness of the
suspension system, tire characteristics, and seat design on passenger comfort.
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Electromechanical System Transfer Functions
Car suspension system

For simplicity, neglect the side and roll motion

An idealized model might be represented as:

mp

Tire

Road	surface

Passenger
Body,

Engine

Suspension	

system

Wheels
Suspension

system

Wheels

Tire

m1

m2

M
J	

CG

k1 b1

k3
k4

k2

ks

b3

b2

b4
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Electromechanical System Transfer Functions
Car suspension system

An idealized model might be represented as:

Road	

surface

m2

x1 x2

M
J	

CG

k1

k3

k4

k2

b3

b1

b2

b4

x4x3

x5

x6 xp

xcg

mp

m1

ks

xs
𝜃

Reference
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Electromechanical System Transfer Functions
Car suspension system

System parameters are:
◮ m1 and m2: wheels,
◮ note: (m1 6= m2) due to the suspensions are different
◮ M and J: mass and pitching inertia of the main car body.
◮ mp: seat and passenger, ks : for seat elasticity.
◮ elasticity and energy dissipation properties of the tires

are represented by k1, k2, b1, and b2.
◮ note:k1 6= k2 due to the pressure on the front > Rear
◮ suspension system is represented by k3, k4, b3, and b4.

displacements x1 and x2 are inputs from the environment
(road surface) and describing position of tires from Ref.

x3, x4 are describing the position of center of the wheels
from Ref.

Road	

surface

m2

x1 x2

M
J	

CG

k1

k3

k4

k2

b3

b1

b2

b4

x4x3

x5

x6 xp

xcg

mp

m1

ks

xs
𝜃

Reference
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Electromechanical System Transfer Functions
Car suspension system

The goal is to develop a mathematical model to be
able later to control.

No. of Equations = No. of masses (m1,m2,mp) and
2 more for M (linear and rotational) = 5 Ordinary
Deferential Equations (ODE)

For each mass (Linear motion):
∑

Fi = miai

For M only (Rotational motion):
∑

Mi = Jα Road	

surface

m2

x1 x2

M
J	

CG

k1

k3

k4

k2

b3

b1

b2

b4

x4x3

x5

x6 xp

xcg

mp

m1

ks

xs

𝜃

Reference
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Electromechanical System Transfer Functions
Car suspension system

For front wheel mass m1:

m1ẍ3 = −fk1 − fb1 − fk2 − fb2

= −k1(x3 − x1)− b1(ẋ3 − ẋ1)

− k3(x3 − x5)− b3(ẋ3 − ẋ5) (6)

For rear wheel mass m2:

m2ẍ4 = −fk2 − fb2 − fk4 − fb4

= −k2(x4 − x2)− b2(ẋ4 − ẋ2)

− k4(x4 − x6)− b4(ẋ4 − ẋ6) (7)

Road	

surface

m2

x1 x2

M
J	

CG

k1

k3

k4

k2

b3

b1

b2

b4

x4x3

x5

x6 xp

xcg

mp

m1

ks

xs
𝜃

Reference
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Electromechanical System Transfer Functions
Car suspension system

For body mass M:
◮ Due to the linear motion

Mẍcg = −fk3 − fb3 − fk4 − fb4 − fks

= −k3(x5 − x3)− b3(ẋ5 − ẋ3)

− k4(x6 − x4)− b4(ẋ6 − ẋ4)

− ks(xs − xp) (8)

◮ due to rotation: Assume the body under a small angle
oscillation (cos θ ≈ 1, sin θ ≈ θ)

J θ̈ = −Mk3 −Mb3 −Mk4 −Mb4 −Mks

= −l1k3(x5 − x3)− l1b3(ẋ5 − ẋ3)

− (l − l1)k4(x6 − x4)− (l − l1)b4(ẋ6 − ẋ4)

− (l1 − l2)ks(xs − xp) (9)

M CG

ks

k3 k4b3 b4

l2

l1

l
x
5

x
6

xs
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Electromechanical System Transfer Functions
Car suspension system

in previous equation:
◮ l1: distance from the left end to center of gravity (CG),
◮ l2: distance to the seat mount,
◮ l : total length (wheel base).

For Passenger mass mp:

mp ẍp = −fks

= −ks(xp − xs) (10)
Road	

surface

m2

x1 x2

M
J	

CG

k1

k3

k4

k2

b3

b1

b2

b4

x4x3

x5

x6 xp

xcg

mp

m1

ks

xs

𝜃

Reference
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Given the combined translational and
rotational system shown in Figure, find the 
transfer function, GðsÞ ¼ XðsÞ=TðsÞ. D3

J2Radius = r

K1 Ideal
gear 1:1

K2

M

fv

J1 J3

T(t)

x(t)
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Writing the equations of motion,  

(J1s2+K1)θ1(s)                   - K1θ2(s)                            = T(s)

-K1θ1(s) + (J2s2+D3s+K1)θ2(s) +F(s)r    -D3sθ3(s) = 0

-D3sθ2(s) + (J2s2+D3s)θ3(s) = 0

where F(s) is the opposing force on J2 due to the translational member and r is the radius of J2.
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for the translational member,  

F(s) = (Ms2+fvs+K2)X(s) = (Ms2+fvs+K2)rθ(s)

Substituting F(s) back into the second equation of motion,  

(J1s2+K1)θ1(s)                                                      - K1θ2(s)     = T(s)

-K1θ1(s) + [(J2 + Mr2)s2+(D3 + fvr2)s+(K1 + K2r2)]θ2(s)             -D3sθ3(s) = 0

-D3sθ2(s) + (J2s2+D3s)θ3(s) = 0

Notice that the translational components were reflected as equivalent rotational components by the  

square of the radius. 
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determinant formed from the coefficients of the three equations of motion. Hence,  

θ2 (s)

T(s)
=

K1(J3s
2 + D3s)

∆
Since  

X(s) = rθ2 (s),  
X(s)

T (s)
=

rK1(J3s
2 + D3s)

∆

2

3
square of the radius. Solving for θ2(s), θ (s) =

K1(J3s
2 + D s)T(s)

∆
, where ∆ is the  
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Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.

Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io Robotics Research Interest Group (zuR2IG)
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