aﬁ-« Mechatronic Systems Design

MEC301

Asst. Prof. Dr.Ing.
Mohammed Nour A. Ahmed
mnahmed®@eng.zu.edu.eg

https://mnourgwad.github.io

Lecture 5: Modeling and Simulation 2

Copyright (©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course
work and learning material. All Rights Reserved.

Where otherwise noted, this work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt


mailto:mnahmed@eng.zu.edu.eg
https://mnourgwad.github.io
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Translational Mechanical System Transfer Functions

[f(t)] =N (newtons),
Component Force-displacement ~ G(s) [X(t)] = m (meters),
Spring f(t) =K x K [v(t)] = m/s (meters/second),

, (1) [K] = N/m (newtons/meter),
Viscous damper  f(t) = b dt bs [b] =N s/m (newton.seconds/meter),
Mass f)=m&8  yg M = kg (kiograms).

; Mass
Spring “ Viscous damper > x()
HW £ =0
K
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Transitional Mechanical Systems

¢ Mechanical movements in a straight line (i.e.

linear motion) are called “transitional”

¢ Basic Blocks are: Dampers, Masses, and Springs
e Springs represent the stiffness of the system

e Dampers (or dashpots) represent the forces

opposing to the motion (i.e. friction)

e Masses represent the inertia
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displacement

F = kx

velocity
/
F=cv
F =ma
7 N
mass acceleration
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Transitional Mechanical Systems

» Equations for mechanical systems are based on
Newton Laws

» Free body diagram

Spring

Force
Era— Mass
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Example: Mass-Spring-Damper
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Note: D is Differentiation
1/D is Integration
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Example: Two-Mass Mechanical System

B
Fex‘lemal
[——
[ | [ |
[ M| ’V;f\z | M2 | ’V:(-/\;
1 2
|—>X| I—»—x;
2an[ 1 xe [1] ko [1] xwo
Mass 1: Xj(t) = — > Fi(1) M, s s
Mass 2: X(f) = — Fa(t — — —
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Example: Two-Mass Mechanical System

S F(h)
> Fa(h)

Fi(fy — Ky(x(fy — xa(0)) — Bix(f) — xa(t))

Ki(xi(1) — x2(0) + B(x(t) — x200)) — Koxa(t)
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Example: Mechanical Model

» Consider a two carriage train system

k(x1-x2)
Force +—— Mass 1 NN —_—] Mass 2
k(x1-x2)
— —
cvi cv2

m1)'é1 =f-k(X1-X2)-C).(1
mzkz :k(x1-x2)-ci(2
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» Taking the Laplace transform of the equations
gives

mys2X4(s) = F(s) - k(X1(s) - X2(s)) -csX(s)
mys%X 5 (s)=k(X4(s)- X(s)) -csX(s)

= Note: Laplace transforms the time domain problem into s-domain
(i.e. frequency)

L{x(®)}= X(s) = Te_St x(0dt
(]

Lix(®)} = sX(s)
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» Manipulating the previous two equations, gives the
following transfer function (with F as input and V1
as output)

Vi(s) m,s? +cs+k
F(s) mymys3 +c(my+m,)s? +(km1 +km, +c2}9+2kc

= Note: Transfer function is a frequency domain equation that gives
the relationship between a specific input to a specific output
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Example continued

e Simulation using MATLAB

ml= 5; m2=0.7; k=0.8; c¢=0.05;

num=[m2 c k];
den=[ml*m2 c*ml+c*m2 k*ml+k*m2+c*c 2*k*c];

sys=tf (num,den); % constructs the transfer function

figure; impulse(sys); % plots the impulse response

grid on, box on;

figure; step(sys); % plots the step response

grid on, box on;

figure; bode(sys); % plots the Bode plot

grid on, box on;
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Example continued: Impulse response

o
o

Impulse Response
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Example continued: Step response

Step Response
10 e —

o

Amplitude

I I I I
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Time (seconds)
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Example continued: Bode Plot

Bode Diagram
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Example: Motion of Aircraft

(a) Harrier “jump jet™ (b) Simplified model

(x, v, #) denote the position and orientation of the center of mass
m¥ = Fycos8 — F,sinf — cx,
mi = Fysin@ + F5 cos0 —mg —cv,
J9 = I’Fl.
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Rotational Mechanical System Transfer Functions

o Transfer functions of basic components [T(t)] = Nm (newtons.meters),
[6(t)] = rad (radians),
- : [w(t)] = rad/s (radians/second),
Component Torque-angular displacement ~ G(s) [K] = Nm/rad (newtons meter /rad)
Spring T(t)=Ko(t ) K [D] =N m s/rad (newton.meter.seconds/rz
Viscous damper  T(t) = Dd0 bs [J] = kgm? (kilograms.meter?).
. ) Z = Rotational mechanical impedances
Inertia T(t) = dt2 Js
() 6 Viscous T(0) () 6(1)
Spring \j \j damper ? ? Inertia
J
input gea output gear
. . input gear
o Transfer functions for systems with gears M 60 10

o
bhon_ M T_b_ M L _[M] @ \
b o N i 6 Ny 4 M )
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» Consider a mechanical system that involves

rotation .
<\Torque, T o= d9/d/t >
Shaft \
J do/dt + kO +cw

Side View Top View
*The torque, T, replaces the force, F
*The angle, 0, replaces the displacement x
*The angular velocity, ® , replaces velocity v
*The angular acceleration, o, replaces the acceleration a

of inertia J. renlaces the mass m
Mechatronic Systems Design 17 / 66
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* The mechanics equation becomes

damper angular

coefficient veloci
ty moment of

angle inertia angular

spring acceleration

coefficient \

_— T=kO@+cw+Ja

Torque 2
=>T=k9+cde+Jd 9
dt dt?
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Example: Rotational-Transitional System

* Consider a rack-and-pinion system. The rotational motion
of the pinion is transformed into transitional motion of
the rac

For simplicity, the spring effects are ignored
dw
Tin —Tout =J——+cCcqw
dt
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dw
The rotational equation is Tin —Tout =J ot +C1w

o .o dv
The transitional equation is F—-cav=m ot
Using the equations Tour = rF
w = v/r

And manipulating the rotational
and transitional equations cq ( J )dv
with the input torque, Tin, as Tin Z( % +c2rjv + 4 +mr dt
inputs and velocity, v, as
output, we get
20 / 66
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Let us take a look at the state
space equations x = Ax +~ Cu

In general, y = Bx + Du

where x is the states vector, y is
the output vector, and u is the
input vector

In our example, we will dw —Cq 0 1/ —r
use the states: ® and v, At = 4 {w} + /l /l {Tm}
d o 1 |F

"4 —C
the inputs: T, and F dt 0 2/-" v
the output: v w
o . v=[0 1
Manipulating the equations v

in the previous slide, we get
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Conversion: Transitional and Rotational

LONU |""'“"]
o g | vy
- b B
g

Lead screw

I—. A6

[—»x(f)
[ |
) ls(.‘) ]_LJ (@ j Mr'z e EP‘Z

Belt Pulley

Drive
motor N
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Gear Trains

Ty _6_ Ny _aox _n

T, 6 N2 o

2
Inertia: (I?\V(_;) .fz

N
Viscous-friction coefficient: (Fl) Ay
2

Ny
Torque: —T-
orane: g, 2

N
Angular displacement : 1\7] 62
2

N
Angular velocity : —L w3y
N

Coulomb friction torque : & F. 22

Ny 7 |an]
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Gear Trains

T(f) = dslm d()+F ﬁ+Tl()
Z| Ta(t) = o 92()+Bzd62(‘)+f’a%
(1) = 1i‘"2(t) = (N‘;) 2dg;2(r)+ (ﬁz) By —**deéfd +'N—F %
d%e, (1 de (¢

T(t) = Jre d:lz( L g, 218 7,
where

_ N? M Tp=Fag 2 Mg, @
Jle—-fl“f—(N—.z) S e =81+ (Nz) B2 # |()||+ Hh“|(uz|
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Electrical Network Transfer Functions

o Transfer functions of basic components
Symbol ~ Component  Voltage-current G(s)

6 Capacitor ~ v(t) = %fot i(r)ydr &
AW\= Resistor v(t) = Ri(t) R

/0000~ Inductor v(t)=1L % Ls
o Transfer functions of operational amplifiers
> inverting operational amplifier: G(s) = z"’((:)) = 28
> noninverting operational amplifier: G(s) = \\//7(:)) = ZI(SZ)ISZ)Z(S)
Z(s) 40
Vi(s) - V.(s)
V,(s) Vis) .
+
inverting 1 ZlmD
OpAmp ~ noninverting
— OpAmp

Mohammed Ahmed (Assoc. Prof. Drlng) Advanced Control Theorv 04042016 7/23
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Electrical Systems: Basic Equations

o current
* Resistor )
Ohm'’s Law Voltage «—— V = RiJ
di Resistance
e Inductor V=L—
dt
Inductance
1.
» Capacitor V=] E’dt

dVv Capacitance
=i=C d_
Power = Voltage x Current t
Mechatronic Systems Design 26 / 66



Kirchoff Laws

e Equations for electrical systems are based on
Kirchoff’s Laws

1. Kirchoff current law:

Sum of Input currents at node = Sum of output currents

2. Kirchoff voltage law:

Summation of voltage in closed loop equals zero
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o

]

Using Kirchoff voltage law
V=rRi+LY (Tigt o v=rRi+LY v,
dt 'C dt

2
ot Then d t dt 2

A second order differential equation
Mechatronic Systems Design 28 / 66
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RLLC MATLAB Code

e R=1000000; % R =1MQ
e L=0.001; % L=1mH
e C=0.000001; % C=1uF

e num=1; den=[L*C R*C 1];
 sys=tf(num,den);

» bode(sys)

» Impulse(sys)

» Step(sys)
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RLC Simulation: Bode Plot

Bode Diagram

At DC (i e. ﬁ-equency 0), Capacitor is open
.=> Voltage gain is odB_(i.e. 1 V/V.) .......... |

Magnitude (dB)

Phase (deg)

o " R SRR

Fregquency (rad/sec)
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RLC Simulation: Impulse Response

Impulse Response
1 T T T T T

""" In put Voltage‘;'rs pulse- 'Cap'acitfm' stores ertrergy' "

Amplitude

Time (sec])
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RLC Simulation: Step Response

Step Response

Ampliude

Time [=ec)
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Input Feedback

Transfer
Element Element Function
—AN— —AAN— "
Zi=k, Zr=R,
s o 1N g
—AAN— _{ I» RiCs/ s
Z =R,
Yi= 450
C, R, (—R-_}C] :l“
_I }‘ AN~
Zr=Ry
Y= sC,
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Za(s)

Zy(s)

Comments

Inverting gain, e.g., if ] =

Ry, 6, = —61
Pole at the origin, i.e., an

integrator

Zero at the origin. ie., a
differentiator

33 / 66



Motor (0]

, di
« The electrical equation is Vin = Ri+ LE +Vem

where V. (Back electromagnetic voltage) = k0

= The mechanical equation is T=J c;—(: +bw+Tipaq

.
where T = ki
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Vv 1/(Ls+R)

1/(Js+b)

Scopel

FPulse
Fenerator

Transfer Fon
=aini
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Fluid Systems

Fluid systems can be divided into two categories:
Hydraulic: fluid is a liquid and incompressible
Pneumatic: fluid is gas and can be compressed

The volumetric rate of flow, g, is equivalent to the current
The pressure difference, P,-P,, is equivalent to voltage

The basic building blocks for hydraulic systems are:
Hydraulic resistance, capacitance, and inertance
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e Hydraulic resistance is the resistance to the fluid flow
which occurs as a result of valves or pipe diameter
changes

e The relationship between the volume rate of flow, g, and
pressure difference, p,-p, ,is given by Ohm’s law

p1—pP2 =Rq | '
L =
P, P P, A—\ P.

pipe valve
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» Potential energy stored in a liquid such as height
of a liquid in a container

— | %

Py
Volume
h A Change Gy —qn = dv
142 =~
P. —— q, — o dh
Volumetric V = Ah — — —A—
rate of 91-92 dt
change
height

Cross sectional Area
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P1—pP2=p=hgp — densiy
L)
pressure height gravity

Notethat p=F/A=mg/ A= p=pVg/ A= p=hgp

d(p_m_iﬁ

dh
q1-q2=A—-=>q1-q2=A

dt dt  gpdt
By letting the hydraulic capacitance be C= A
dp ap
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¢ Equivalent to inductance in electrical systems
» To accelerate a fluid and increase its velocity a force is

required
F1—F2 =(p71—p2)A

Cross sectional Area

. using dv
: : F,-F, =ma=m—
F,=p,A mass F,=p,A dt
: : m=ALp
q=Av
Length Then dq Where the Inertance is
pP1—p2 =1 dat [ Lp

A
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Hydraulic Example Modeling;:
an interactive 2-tank system

— | G®
A,
o * —»l:t(t) [, _E' q.(D)
% = (Qin (9 —q1 (9 )/Aq
L2 (@109 -a20)/A
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qg2(t) =hz (/R
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Input: q;,

1/A,

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

dh,/dt

Integrate-

1/R,

q.

1/A,

1/A,
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Integrate —

1/A,

!

Output: q,

43 / 66



Hydraulic Example: Simulation

S

—{>—H]

Gaini Integratort Gaind Scope
Q’L
Gaind
Input, q;,, is a step Output, q,, is taken

to a virtual scope
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Another Form of Analogies
Potential and Flow Variables

* When systems are in motion, the energy can be
Increased by an energy-producing source outside the system
Redistributed between components within the system

Decreased by energy loss through components out of the
system.

» Therefore, a coupled system becomes synonymous
with energy transfer between systems.

Potential Variable = PV
Flow Variable = FV
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Analogies: FV and PV

Flow Variable

Potential Variable

(FV) (PV)
Electrical Current Voltage
Mechanical Transitional Force ﬁ Velocity

Mechanical Rotational

Torque &

Angular Velocity

Hydraulic Volumetric Flow Rate Pressure
Pneumatic Mass Flow Rate Pressure
Thermal Heat Flow Rate Temperature

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Which Analogies to use?

» Force-Voltage makes more physical sense
Graphical Representation: Bond Graphs

e Force-Current makes mathematical sense

e Sum of Currents= Zero and Sum of Forces = Zero
Graphical Representation: Linear Graphs
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e Mathematical Modeling of physical systems is an
essential step in the design process

e Simulation should follow the modeling in order to
investigate the system response

¢ Mechatronic systems involve different disciplines and
therefore an appropriate modeling technique to use is
block diagrams

» Analogies among disciplines can be used to simplify the
understanding of different dynamic behaviors
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Electromechanical System Transfer Functions
DC Motor with Load
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Electromechanical System Transfer Functions
DC Motor with Load

o for a DC motor, mechanical and electrical equations are:

di T motor torque
V=Ri+L—+e (]_) K: torque constant
dt ? i current,
v supplied voltage,
w rotor speed,
€ back-emf (e = Kew),

d ; - e
T = Kt i= dei’: + me + B (3) R,L  resistance and induction.

ep = Kt w (2)

o For a fixed voltage, torque—speed curves are derived from (3) & (1):

k k
T:ﬁ(V—Ktw):ﬁV—kﬁ,w (4)

Kn = % is the motor constant, [numerically, k: == k|

» slope of the torque—speed curves is —K>.
» voltage-controlled DC motor has inherent damping in its mechanical behavior
> torque increases in proportion to applied voltage and reduces as w increases.
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Electromechanical System Transfer Functions
DC Motor with Load

Example

Given the DC motor with load system and torque-speed curve, find the transfer function, 6;(s)/V/(s). J

N, =100

6(t)
N, =100

J,=5lg-m? ‘ J; =100 Ig m 2 - > W,
D,=2Nm s'rad Speed (rad/s)
D;=800 N'm yrad
Mohammed Ahmed (Asst. Prof. Dr.Ing.) Mechatronic Systems Design
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Electromechanical System Transfer Functions
DC Motor with Load

o to get the transfer function, we combine Laplace transforms of (1) through (3) and simplifying:

Vis) [s+ ﬁ (Dm 3+ %)]
o the total inertia and damping at the armature of the motor are:
N2 1\?
m = —_— = —_— = 12
J J3+JL<N2> 5+700<10>

% 1\’
Dp=D,+D|—] =2 — ] =1
m a‘l‘ L<N2> +800<10> 0

o the electrical constants, K;/R, and K. From the torque-speed curve,

Hm(S) _ kt/(RaJm) (S)J

Tstan = 500, Who—load = 50, V =100
Mechatronie Systems Design -



Electromechanical System Transfer Functions
DC Motor with Load

o Hence the electrical constants are:

ﬁiTstalliyis _ vV 7@7
R,V 10 P rorod 50

2

o Substituting system parameters into Eq.(5) yields:

Om(s) 5/12 0.417

V(s) s[s+5(10+5x2)]  s(s+1.667)

o to find the final transfer function (from the load-side, i.e. 6;/V/(s)), we use the gear ratio,
Ny /Ny =1/10, hence we get:
fi(s) 00417

V(s) s(s+1.667)
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Electromechanical System Transfer Functions

Car suspension system

Example

Develop a model of an automobile which would be appropriate for studying the effectiveness of the
suspension system, tire characteristics, and seat design on passenger comfort.
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Electromechanical System Transfer Functions

Car suspension system

o For simplicity, neglect the side and roll motion

o An idealized model might be represented as:

Body,
i [ m, | Passenger

Engine\

Suspension
system : : N
ks g mb uspension : 3
Wheels ) L) P S
by system o

. ST
Wheels,* .|
N Mc‘h Roll

Ky lb1 |
Tire — __T k o \
2 j’b“—Tire 0

Road surface
56 / 66
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Electromechanical System Transfer Functions

Car suspension system

o An idealized model might be represented as:

Rlefelrence

X1

Road
surface

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Electromechanical System Transfer Functions

Car suspension system

o System parameters are:

>
>
>
>
>

>

>

my and my: wheels,

note: (m # my) due to the suspensions are different

M and J: mass and pitching inertia of the main car body.
mp: seat and passenger, ks: for seat elasticity.

elasticity and energy dissipation properties of the tires
are represented by ki, ko, b1, and b,.

note:ki # ko due to the pressure on the front > Rear
suspension system is represented by k3, ks, b3, and bs.

o displacements x; and x; are inputs from the environment
(road surface) and describing position of tires from Ref.

0 X3, x4 are describing the position of center of the wheels
from Ref.

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Electromechanical System Transfer Functions

Car suspension system

o The goal is to develop a mathematical model to be
able later to control.

o No. of Equations = No. of masses (my, my, m,) and
2 more for M (linear and rotational) = 5 Ordinary
Deferential Equations (ODE)

o For each mass (Linear motion): )" F; = m;a;
o For M only (Rotational motion): Y~ M; = Ja

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Electromechanical System Transfer Functions

Car suspension system

@ For front wheel mass my:

mx3 = —fi —fp, = fi, —

s,

= —kl(X3 - X1) - bl()'(g, - X1)
— ka(xs = x5) = bs(%s — Xs) (6)

o For rear wheel mass my:

ITIQ)I(A = 7sz - be - ka -

fo,

= —ko(xa — x2) — (%4 — %)
- k4(X4 - X6) - b4(X4 - X6) (7)

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Electromechanical System Transfer Functions

Car suspension system

o For body mass M:
> Due to the linear motion

Mxg = —fig — foy — fiy — fo, — fi
= —k3(X5 - X3) - b3()'(5 - X3)
- k4(X6 — X4) - b4(>‘<6 - >‘<4)

- ks(Xs - Xp) (8)
> due to rotation: Assume the body under a small angle

oscillation (cosf = 1,sin = 6)

Ji= My — My, — My — My, — M,
= —hks(xs — x3) — hbs(% — x3)
— (1= h)ka(x6 — xa) — (I — h)ba(%6 — Xa)
~ Bkl — ) )
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Electromechanical System Transfer Functions

Car suspension system

@ in previous equation:

> Ii: distance from the left end to center of gravity (CG),
» h: distance to the seat mount,
> | total length (wheel base).

o For Passenger mass mp:

Mohammed Ahmed (Asst. Prof. Dr.Ing.)
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Given the combined translationaland T Radius =r [ Jy

rotational system shown in Figure, find the
transfer function, G(s) = X{s) Tls),

f
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Witing he eqations of motion,

Iskb Kb T
i - Dtk e D=0
D + D=1

whereF() st opposig forceon J e o the ransltional member and i the radis of ],




for the translational member,
F(s) = (Ms2+f,5+K)X(s) = (Ms2+ys+K7)r0)(s)
Substituting F(s) back into the second equation of motion,

(J1s2+K)01(s) -K102(5) =1T(s)

Ki01(s) + [(7 + MD)s+(D3 + frD)sH(Ky +Kord)Ba(s)  -D3s03(5)=0
-D3s0(s) + (Jps24+D35)03(s) = 0

Notice that the translational components were reflected as equivalent rotational components by the

square of the radius.
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K (35 + DTS
square of the radius. Solving for (h(), (92(5): 1( » 3) ( )

,where A 18 the

determinant formed from the coefficients of the three equations of motion. Hence,

@@z&uﬁ+a$

Since




Thanks for your attention.

Questions?
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https://mnourgwad.github.io Robotlcs Research Interest Group (zuRZIG)
Zagazig University | Faculty of Engineering | Computer
and Systems Engineering Department | Zagazig, Egypt

@@@@ Copyright (©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved.
BY NC_SA

Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Mechatronic Systems Design 67 / 66


mailto:mnahmed@eng.zu.edu.eg
https://mnourgwad.github.io
https://creativecommons.org/licenses/by-nc-sa/4.0/

