

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Lecture 3: Modeling and Simulation

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Modeling

- *Modeling is the process of representing the behavior of a real system* by a collection of mathematical equations and logic.
- Models are cause-and-effect structures—they accept external information and process it with their logic and equations to produce one or more outputs.
 - Parameter is a fixed-value unit of information
 - Signal is a changing-unit of information
- Models can be text-based programming or block diagrams

Math Modelling Categories

- Static vs. dynamic
- Linear vs. nonlinear
- Time-invariant vs. time-variant
- SISO vs. MIMO
- Continuous vs. discrete
- Deterministic vs. stochastic

Static vs. Dynamic

- Models can be static or dynamic
 - **Static models** produce no motion, fluid flow, or any other changes.
 - Example: Battery connected to resistor $\boldsymbol{v} = \boldsymbol{i}\boldsymbol{R}$
 - **Dynamic models** have energy transfer which results in power flow. This causes motion, or other phenomena that change in time.
 - Example: Battery connected to resistor, inductor, and capacitor

$$v = Ri + L \frac{di}{dt} + \int \frac{1}{C} i dt$$

Linear vs. Nonlinear

- Linear models follow the superposition principle
 - The summation outputs from individual inputs will be equal to the output of the combined inputs

A system represented by S is said to be *linear* if for inputs x(t) and v(t), and any constants α and β , superposition holds—that is,

 $\mathcal{S}[\alpha x(t) + \beta v(t)] = \mathcal{S}[\alpha x(t)] + \mathcal{S}[\beta v(t)]$

 $= \alpha S[x(t)] + \beta S[v(t)]$

• Most systems are nonlinear in nature, but linear models can be used to approximate the nonlinear models at certain point.

Linear vs. Nonlinear Models

• Nonlinear Systems

• Linear Systems

Time-invariant vs. Time-variant

- The model parameters do not change in time-invariant models
- The model parameters change in time-variant models
 - Example: Mass in rockets vary with time as the fuel is consumed.

If the system parameters change with time, the system is time varying.

Time-invariant vs. variant

• Time-invariant

F(t) = ma(t) - g

Where m is the mass, a is the acceleration, and g is the gravity • Time-variant F = m(t) a(t) - g

Here, the mass varies with time. Therefore the **model is time-varying**

Linear Time-Invariant (LTI)

- LTI models are of great use in representing systems in many engineering applications.
 - The appeal is its simplicity and mathematical structure.
- Although most actual systems are nonlinear and time varying
 - Linear models are used to approximate around an operating point the nonlinear behavior
 - Time-invariant models are used to approximate in short segments the system's time-varying behavior.

SISO vs. MIMO

- **Single-Input Single-Output** (SISO) models are somewhat easy to use. Transfer functions can be used to relate input to output.
- **Multiple-Input Multiple-Output** (MIMO) models involve combinations of inputs and outputs and are difficult to represent using transfer functions. *MIMO models use State-Space equations*

System States

Transfer functions

- Concentrates on the input-output relationship only.
- $\circ\,$ Relates output-input to one-output only ${\bf SISO}$
- It hides the details of the inner workings.

State-Space Models

- *States* are introduced to get better insight into the systems' behavior. These states are a collection of variables that summarize the present and past of a system
- Models can be used for **MIMO** models

SISO vs. MIMO Systems

Continuous vs. discrete

- **Continuous models** have continuous-time as the dependent variable and therefore inputs-outputs take all possible values in a range
- **Discrete models** have discrete-time as the dependent variable and therefore inputs-outputs take on values at specified times only in a range

Continuous vs. discrete

- Continuous Models
- Differential equations
- Integration
- Laplace transforms

- Discrete Models
- Difference equations
- Summation
- Z-transforms

Deterministic vs. Stochastic

- **Deterministic models** are uniquely described by mathematical equations. Therefore, all past, present, and future values of the outputs are known precisely
- **Stochastic models** cannot be described mathematically with a high degree of accuracy. These models are based on the theory of probability

Block Diagrams

- Block diagram models consist of two fundamental objects: *signal blocks and wires*.
 - A *block is a processing element which operates on input* signals and parameters to produce output signals
 - *A* wire is to transmits a signal from its origination point (usually a block) to its termination point (usually another block).
- Block diagrams are suitable to represent multidisciplinary models that represent a physical phenomenon.

Block Diagram Example

THREE BLOCK SYSTEM EXAMPLE

Block Diagrams Manipulation

SERIES MANIPULATION—SERIES BLOCKS MULTIPLY

PARALLEL MANIPULATION—PARALLEL BLOCKS ADD

BASIC FEEDBACK SYSTEM (BFS) BLOCK DIAGRAM

$$\frac{Y}{R} = \frac{G(D)}{1 + G(D) \cdot H(D)}$$

Block Diagrams Manipulation

PICK-OFF POINT SHIFTED DOWNSTREAM

PICK-OFF POINT SHIFTED UPSTREAM

Block Diagrams: Direct Method Example

Consider the transfer function:
$$T(s) = \frac{Y(s)}{R(s)} = \frac{s^2 - 3s + 4}{s^4 + 2s^3 - 5s^2 + 2s - 9}$$

We can introduce s state variable, x(t), in order to separate the polynomials

$$r(t) = \frac{1}{s^4 + 2s^3 - 5s^2 + 2s - 9} x(t) = \frac{y(t)}{s^2 - 3s + 4}$$

State Equation

The differential equation is:

Put the needed *integrator blocks*:

Add the required *multipliers* to obtain the state equation:

Output Equation

Repeat the same procedure for the output equation:

$$\ddot{x}(t) - 3\dot{x}(t) + 4x(t) = y(t)$$

Connect the two sub-blocks

Block Diagram Modeling: Analogy Approach

- Physical laws are used to predict the behavior (both static and dynamic) of systems.
 - Electrical engineering relies on Ohm's and Kirchoff's laws
 - o Mechanical engineering on Newton's law
 - Electromagnetics on Faradays and Lenz's laws
 - Fluids on continuity and Bernoulli's law
- Based on electrical analogies, we can derive the *fundamental* equations of systems in five disciplines of engineering:
 Electrical, Mechanical, Electromagnetic, Fluid, and Thermal.
- By using this *analogy* method to first derive the fundamental relationships in a system, the equations then can be represented in block diagram form, allowing secondary and nonlinear effects to be added.
 - This two-step approach is especially useful when modeling large coupled systems using block diagrams.

Power and Energy Variables: Effort & Flow

Energy Domain	Effort, e	Flow, f	Power, P
General	е	f	$e \cdot f[W]$
Translational	Force, F [N]	Velocity, V [m/sec]	$F \cdot V [N \text{ m/sec, W}]$
Rotational	Torque, T or τ [N m]	Angular velocity, ω [rad/sec]	$T \cdot \boldsymbol{\omega} [\text{N m/sec, W}]$
Electrical	Voltage, v [V]	Current, i [A]	$v \cdot i [W]$
Hydraulic	Pressure, P [Pa]	Volumetric flowrate, $Q [m^3/sec]$	$P \cdot Q [W]$

TABLE 9.1 Power and Energy Variables for Mechanical Systems

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.