

Asst. Prof. Dr.Ing. **Mohammed Ahmed** mnahmed@eng.zu.edu.eg <goo.gl/GHZZio>

Lecture 3: **MATLAB/Simulink – Crash Course**

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons](https://creativecommons.org/licenses/by-nc-sa/4.0/) [Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture 3

MATLAB/Simulink Crash–Course

MATLAB/Simulink

O DC Motor Model

Simulink

Model

simplified representation of a system $-$ e.g. using mathematical equation(s)

- We simulate a model to study the behavior of a system
- \bullet need to verify that our model is correct expect results

• Knowing how to use Simulink or MATLAB does not mean that you know how to model a system

- Used to model, analyze and simulate dynamic systems using block diagrams.
- Simulink is a graphical, **drag and drop** environment for building simple and complex signal and system dynamic simulations – therefore is easy to use.
- It allows users to concentrate on the structure of the problem, rather than having to worry about a programming language.
- We simulate a model to study the behavior of a system need to verify that our model is correct
- However modeling a system is not necessarily easy!

Launch Simulink

• to start simulink: at Matlab command line, type:

o or click Library on the "Home Toolstrip"

Launch Simulink

• The Simulink library should appear

- **Sources:** blocks that have only output, generators, constant, \cdots
- **Sinks**: blocks that have only input, scope, to worspace. \cdots
- Continuous; integrator, transfer function.· · ·
- **Discrete**: discrete transfer function, unite delay, memory...
- Math operations: gain, product, sum, trig. functions \cdots
- \bullet User defined functions: S-function, S-function builder, \cdots
- **SimPowersystem**: Electrical blocks electrical sources, machines, measurements, \cdots

Simulink Libraries

Mohammed Ahmed (Assoc. Prof. Dr.Ing.) **Actuators and Drives** 13.03.2016 8 / 39

Create a new model

Click File-New (upper left corner) to create a new workspace

- Model is created by choosing the blocks from different libraries, **dragging** them to model window and linking them.
- The **parameters** of block, can be reached with double click on the block.

Select an input block

• Drag a Sine Wave block from the Sources library to the model window

Select an operator block

Select an output block

Drag a Scope block from the Sinks library to the model window

Connect blocks with signals

- Place your cursor on the output port $(>)$ of the Sine Wave block
- Drag from the Sine Wave output to the Integrator input
- Drag from the Integrator output to the Scope input
- Arrows indicate the direction of the signal flow

Set block parameters

The parameters of block (shown on picture, sine wave and integrator parameters), can be reached with double click on the block

Configuration parameters

Numerical solver method, start time, stop time (it can be also set directly)...

Run the simulation

• In the model window, from the Simulation pull-down menu, select Start

Simulation results

Double-click on the Scope to view the simulation results

Now, let's build a simple model!

This model plots the sign of the input signal.

Step1: Start Simulink and choose New then Model from the File menu.

Step2: Copy the needed blocks by using Drag and Drop.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.) **Actuators and Drives** 13.03.2016 21/39

Step3: Complete the connection.

Step4: Set the block parameters.

Step5: Setup the simulation parameters.

Step6: Start simulation.

Manipulating blocks

Labels and Annotations

Moving a line segment

Step1: Position the pointer on the segment you want to move.

Step2: Press and hold down the left mouse button.

Dividing a line into segments

Step1: Select the line.

Step2: Position the pointer on the line where you want the vertex.

Step3: While holding down the Shift key, press and hold down the mouse button.

Step4: Drag the pointer to the desired location.

Inserting a block in a line

Step1: Position the pointer over the block and press the left mouse button.

Step2: Drag the block over the line in which you want to insert the block.

Step3: Release the mouse button to drop the block on the line.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.) **Actuators and Drives** 13.03.2016 13.03.2016 30 / 39

Subsystems

Subsystems can hide the complexity of the subsystems from the user, which can make your model clearer. There are two ways to create Subsystems. . You can create a Subsystem by adding the Subsystem block from Signals & Systems. Then you can edit the Subsystem by doubling clicking the Subsystem block. . You can create create the subsystem by grouping blocks from an existing system.

1. Use the mouse to select the blocks

2. Choose Create Subsystem from the Edit menu

DC Motor, How it works?

<https://www.youtube.com/watch?v=LAtPHANEfQo>

Building Blocks

Model

Equivalent Electric Circuit

We assume:

- input of the system is the voltage source (V) applied to the motor armature
- output is the rotational speed of the shaft $(\omega = \frac{d\theta}{dt})$
- rotor and shaft are assumed to be rigid.
- viscous friction torque proportional to shaft angular velocity.

Model

applying Kirchoff law to the motor system

$$
V = Ri + L \frac{di}{dt} + e_b \tag{1}
$$

back EMF, e_b is proportional to angular velocity of shaft by a constant factor K_e ,

$$
e_b = K_e \,\omega \tag{2}
$$

torque generated by the motor is proportional to armature current and the strength of the magnetic field. Since magnetic field is constant, therefore,

$$
T = K_t i \tag{3}
$$

where \mathcal{K}_t is torque constant.

where J and b are moment of inertia of the rotor and viscous coefficient, resp.

 \bullet The motor torque, T, is related to the armature current, i, by:

$$
T=K_t\,i
$$

• The back emf, Eb, is related to the angular velocity by:

$$
e_b=K_e\,\omega
$$

• The dynamic equations for electrical and mechanical balance from Kirchhoff's law and Newton's law are

$$
\frac{di}{dt} = \frac{V}{L} - \frac{R}{L}i - \frac{k_e}{L}\omega
$$

$$
\frac{d\omega}{dt} = \frac{k_t}{J}i - \frac{b}{J}\omega
$$

Assignment

- \bullet Show that the two units, Nm/A and V/rad/s, are identical.
- **2** Develop a MATLAB/Simulink model of the brushed DC motor with the following parameters:

Block Mask

Simulation Results

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are: $\frac{1}{T}$ motor torque

$$
T = K_t i
$$
\n
$$
V = Ri + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = Ri + L \frac{di}{dt}
$$
\n(6)\n
$$
F = K_i \omega
$$
\n(7)\n
$$
F = K_t \omega
$$
\n(8)\n
$$
F = K_e \omega
$$
\n(9)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(11)\n
$$
F = K_e \omega
$$
\n(12)\n
$$
F = K_e \omega
$$
\n(13)\n
$$
F = K_e \omega
$$
\n(14)\n
$$
F = K_e \omega
$$
\n(15)\n
$$
F = K_e \omega
$$
\n(16)\n
$$
F = K_e \omega
$$
\n(17)\n
$$
F = K_e \omega
$$
\n(18)\n
$$
F = K_e \omega
$$
\n(19)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(11)\n
$$
F = K_e \omega
$$
\n(12)\n
$$
F = K_e \omega
$$
\n(13)\n
$$
F = K_e \omega
$$
\n(14)\n
$$
F = K_e \omega
$$
\n(15)\n
$$
F = K_e \omega
$$
\n(16)\n
$$
F = K_e \omega
$$
\n(17)\n
$$
F = K_e \omega
$$
\n(18)\n
$$
F = K_e \omega
$$
\n(19)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(10)\n
$$
F = K_e \omega
$$
\n(11)\n
$$
F = K_e \omega
$$
\n(12)\n
$$
F = K_e \omega
$$
\n(13)\n
$$
F = K_e \omega
$$
\n(14)\n
$$
F = K_e \omega
$$
\n(15)\n
$$
F = K_e \omega
$$
\n(16)\n<math display="</math>

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

-
-
-
-

Torque–Speed Relation

for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
V = R \frac{di}{dt}
$$
\n(7)
$$
V = K_t i + L \frac{di}{dt}
$$
\n(8)
$$
V = K_t \omega
$$
\n(9)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(11)
$$
R, L
$$
\n(12)
$$
R, L
$$
\n(13)
$$
R, L
$$
\n(14)
$$
R, L
$$
\n(15)
$$
R, L
$$
\n(16)
$$
R, L
$$
\n(17)
$$
R, L
$$
\n(18)
$$
R, L
$$
\n(19)
$$
R, L
$$
\n(10)
$$
R, L
$$
\n(11)
$$
R, L
$$
\n(12)
$$
R, L
$$
\n(13)
$$
R, L
$$
\n(14)
$$
R, L
$$
\n(15)
$$
R, L
$$
\n(16)
$$
R, L
$$
\n(17)
$$
R, L
$$
\n(18)
$$
R, L
$$
\n(19)
$$
R, L
$$
\n(10)
$$
R, L
$$
\n(11)
$$
R, L
$$
\n(12)
$$
R, L
$$
\n(13)
$$
R, L
$$
\n(14)
$$
R, L
$$
\n(15)
$$
R, L
$$
\n(16)
$$
R, L
$$
\n(17)
$$
R, L
$$
\n(18)
$$
R, L
$$
\n(19)
$$
R, L
$$
\n(10)
$$
R, L
$$
\n(11)
$$
R, L
$$
\n(12)
$$
R, L
$$
\n(13)
$$
R, L
$$
\n(14)
$$
R, L
$$
\n(15) <

 \bullet For a fixed voltage, torque–speed curves are derived from (5) & (6):

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

-
-

Torque–Speed Relation

for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
V = R \frac{di}{dt}
$$
\n(7)
$$
V = K_t \omega
$$
\n(8)
$$
\frac{\omega}{R, L}
$$

$$
V = K_t \omega
$$
\n(9)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(10)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(11)
$$
V = K_t \omega
$$
\n(12)
$$
V = K_t \omega
$$
\n(13)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(14)
$$
V = K_t \omega
$$
\n(15)
$$
V = K_t \omega
$$
\n(16)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(17)
$$
V = K_t \omega
$$
\n(18)
$$
V = K_t \omega
$$
\n(19)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(11)
$$
V = K_t \omega
$$
\n(12)
$$
V = K_t \omega
$$
\n(13)
$$
V = K_t \omega
$$
\n(14)
$$
V = K_t \omega
$$
\n(15)
$$
V = K_t \omega
$$
\n(16)
$$
V = K_t \omega
$$
\n(17)
$$
V = K_t \omega
$$
\n(18)
$$
V = K_t \omega
$$
\n(19)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(11)
$$
V = K_t \omega
$$
\n(12)
$$
V = K_t \omega
$$
\n(13)
$$
V = K_t \omega
$$
\n(14)
$$
V = K_t \omega
$$
\n(15)
$$
V = K_t \omega
$$
\n(16)
$$
V = K_t \omega
$$
\n(17)

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
\begin{array}{ccc}\nK_t & \text{torque constant} \\
V & \text{supplied voltage,} \\
\omega & \text{rotor speed,} \\
\omega & \text{rotor speed,} \\
R, L & \text{resistance and induction.} \\
\end{array}
$$

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

► $K_m = \frac{k_t}{\sqrt{R}}$ is the **motor constant**, [Assig. 1: numerically, $k_t == k_e$]

► slope of the torque–speed curves is $-K_m^2$.

- \triangleright voltage-controlled DC motor has inherent damping in its mechanical behavior
- \triangleright torque increases in proportion to the applied voltage,
- \triangleright torque reduces as the angular velocity increases

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
F, L \text{ resistance and induction.}
$$
\n
$$
F, L \text{ resistance and induction.}
$$
\n(6)

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

- ► slope of the torque–speed curves is $-K_m^2$.
- \triangleright voltage-controlled DC motor has inherent damping in its mechanical behavior
- \triangleright torque increases in proportion to the applied voltage,
- \triangleright torque reduces as the angular velocity increases

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
F, L \text{ resistance and induction.}
$$
\n
$$
F, L \text{ resistance and induction.}
$$
\n(6)

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

- ► slope of the torque–speed curves is $-K_m^2$.
- \triangleright voltage-controlled DC motor has inherent damping in its mechanical behavior
- \triangleright torque increases in proportion to the applied voltage,
- \triangleright torque reduces as the angular velocity increases

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are:

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
V = R \frac{di}{dt}
$$
\n(7)
$$
V = K_t \omega
$$
\n(8)
$$
\frac{\omega}{R, L}
$$

$$
V = K_t \omega
$$
\n(9)
$$
\frac{\omega}{R, L}
$$

$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(2)
$$
V = K_t \omega
$$
\n(3)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(4)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(5)
$$
\frac{\omega}{R, L}
$$

$$
V = K_t \omega
$$
\n(6)
$$
R, L
$$

$$
V = K_t \omega
$$
\n(7)
$$
V = K_t \omega
$$
\n(8)
$$
V = K_t \omega
$$
\n(9)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(11)
$$
V = K_t \omega
$$
\n(12)
$$
V = K_t \omega
$$
\n(13)
$$
V = K_t \omega
$$
\n(14)
$$
V = K_t \omega
$$
\n(15)
$$
V = K_t \omega
$$
\n(16)
$$
V = K_t \omega
$$
\n(17)
$$
V = K_t \omega
$$
\n(18)
$$
V = K_t \omega
$$
\n(19)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(10)
$$
V = K_t \omega
$$
\n(11)
$$
V = K_t \omega
$$
\n(12)
$$
V = K_t \omega
$$
\n(13)
$$
V = K_t \omega
$$
\n(14)
$$
V = K_t \omega
$$
\n(15)
$$
V = K_t \omega
$$
\n(16)
$$
V = K_t
$$

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

motor torque

- ► slope of the torque–speed curves is $-K_m^2$.
- \triangleright voltage-controlled DC motor has inherent damping in its mechanical behavior
- \triangleright torque increases in proportion to the applied voltage,
- \triangleright torque reduces as the angular velocity increases

Torque–Speed Relation

• for a DC motor, mechanical and electrical equations are: motor torque

$$
T = K_t i
$$
\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(5)\n
$$
V = R i + L \frac{di}{dt} + K_t \omega
$$
\n(6)\n
$$
F, L \text{ resistance and induction.}
$$
\n
$$
F, L \text{ resistance and induction.}
$$
\n(6)

• For a fixed voltage, torque–speed curves are derived from (5) & (6) :

$$
T = \frac{k_t}{R}(V - K_t \omega) = \frac{k_t}{R}V - k_m^2 \omega \tag{7}
$$

- ► slope of the torque–speed curves is $-K_m^2$.
- \triangleright voltage-controlled DC motor has inherent damping in its mechanical behavior
- \triangleright torque increases in proportion to the applied voltage,
- \triangleright torque reduces as the angular velocity increases

Torque–Speed Relation

Mohammed Ahmed (Assoc. Prof. Dr.Ing.) **Actuators and Drives 18 06.03.2016** 13 / 17

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. **Mohammed Ahmed** mnahmed@eng.zu.edu.eg

<goo.gl/GHZZio> and the complete control of the Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)