

Asst. Prof. Dr.Ing. Mohammed Ahmed mnahmed@eng.zu.edu.eg goo.gl/GHZZio

Lecture 3: MATLAB/Simulink – Crash Course

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture 3

MATLAB/Simulink Crash–Course

- MATLAB/Simulink
- DC Motor Model

Simulink

Model

simplified representation of a system - e.g. using mathematical equation(s)

- We simulate a model to study the behavior of a system
- need to verify that our model is correct expect results

• Knowing how to use Simulink or MATLAB does not mean that you know how to model a system

- Used to model, analyze and simulate dynamic systems using block diagrams.
- Simulink is a graphical, **drag and drop** environment for building simple and complex signal and system dynamic simulations therefore is easy to use.
- It allows users to concentrate on the structure of the problem, rather than having to worry about a programming language.
- We simulate a model to study the behavior of a system need to verify that our model is correct
- However modeling a system is not necessarily easy !

Launch Simulink

• to start simulink: at Matlab command line, type:

• or click Simulink: on the "Home Toolstrip"

Launch Simulink

• The Simulink library should appear

- Sources: blocks that have only output, generators, constant,...
- Sinks: blocks that have only input, scope, to worspace....
- Continuous; integrator, transfer function....
- Discrete: discrete transfer function, unite delay, memory....
- Math operations: gain, product, sum, trig. functions · · ·
- User defined functions: S-function, S-function builder, ···
- **SimPowersystem**: Electrical blocks electrical sources, machines, measurements, ···

Simulink Libraries

Simplified How y Brawner Fig. Edt. Manu Hale-

Mohammed Ahmed (Assoc, Prof. Dr.Ing.)

Actuators and Drives

Create a new model

• Click File-New (upper left corner) to create a new workspace

Simulink Library Browser		Slp or D	emos from t	he Heln	menu
File Edit View Help		Terb or D	enos rron (me nerb	monu.
D 😅 -14 MA					
Commonly Used Blocks: simulink/Commonly Used Blocks					
	Í	🙀 untitled			00
		File Edit View Simul	ation Format Tools H	elp	
🖻 🙀 Simulink 🔹 🚽 🚛	DISCIELE		BRIGOLL	10.0 Normal	
- 참 Commonly Used Blocks - 참 Continuous	Logic and Bit Operatio			Tronia	
- 2 Discrete	Lookup Tables				
→ Lookup Tables → Math Operations	Math Operations				
- 참 Model Verification - 참 Model-Wide Utilities	Model Verification				
- 🔄 Ports & Subsystems 👘 Misc	Model-Wide Utilities				
- 12 Signal Routing	Ports & Subsystems				
· · · · · · · · · · · · · · · · · · ·	Signal Attributes				
Control System Toolbox Fuzzy Logic Toolbox	Signal Routing	Ready	100%		ode45
Gauges Blockset Gauges Blockset Gauges Blockset	Sinks	111	62 ⁻⁰⁰		10000

Building the model

- Model is created by choosing the blocks from different libraries, **dragging** them to model window and linking them.
- The parameters of block, can be reached with double click on the block.

Select an input block

• Drag a Sine Wave block from the Sources library to the model window

Select an operator block

Select an output block

• Drag a Scope block from the Sinks library to the model window

Connect blocks with signals

- Place your cursor on the output port (>) of the Sine Wave block
- Drag from the Sine Wave output to the Integrator input
- Drag from the Integrator output to the Scope input
- Arrows indicate the direction of the signal flow

Set block parameters

• The parameters of block (shown on picture, sine wave and integrator parameters), can be reached with double click on the block

	Block Parameters: Integrator
	Parameters External reset: none *
Block Parameters: Sine Wave	Initial condition source: internal
Sine Wave Output a sine wave.	Initial condition
Parameters Amplitude:	Limit output
Frequency (rad/sec):	Lower sourcebries.
Phase (rad):	Show saturation port Show state port
Sample time:	Absolute tolerance:
DK Cancel Help Apply	OK Cancel Help pro-

Configuration parameters

• Numerical solver method, start time, stop time (it can be also set directly)...

Configuration Parame	ters: untitled/Confi	guration				×
Select	Simulation time					
Solver Data Import/Export Optimization	Start time: 0.0 Solver options		_	Stop time 1	II.	
Sample Time	Туре.	Variable-step	-	Solver	ode45 (Dormand-Prince)	v
Data Validity	Max step size:	auto		Relative tolerance:	1e-3	
Type Convertion	Min step size:	auto		Absolute Inlerance	auto.	
Compatibility	Initial step size:	auto				
Model Referencing	Zero crossing control	Use local settings	×			
 Model Referencing Beal-Time Workshop Comments Symbols Custion Code Debug Interface 						
<						
		0	ĸ	Cancel	Help Ap	ply:

Run the simulation

• In the model window, from the Simulation pull-down menu, select Start

Simulation results

• Double-click on the Scope to view the simulation results

Now, let's build a simple model!

This model plots the sign of the input signal.

Step1: Start Simulink and choose New then Model from the File menu.

	I A I	- New	•	Model Ctrl+l
	>In Out>	Dpen Close	Ctil+0 Ctil+W	Library
a Tables	& Systems	Save Save as	Ctil+S	
obsets & Simulink Block Library 4.0 oboxes Copyright (c) 1990-2000 The MathWorks, Inc.	Demos	Source control	•	
		Model propertie	IS	
		Preferences		
untitled1	· ·	<u>Print</u> Print set <u>up</u>	Cul+P	
		Exit MATLAB	Ctrl+Q	
	1			1

Step2: Copy the needed blocks by using Drag and Drop.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

Actuators and Drives

Step3: Complete the connection.

Step4: Set the block parameters.

Block Parameters: Sine Wave 🔍 🔍	untitled1 *	
Sine Wave	Eile Edit View Simula	tion Format Tools Help
Output a sine wave.		BE ⊇ ⊂ BES€
- Parameters Amplitude:	-	
0	IN.	▶≓──▶□
Frequency (rad/sec):	Sine Wave	Sign Scope
1		
Phase (rad):		
0	1100%	ode45
Sample time:		
0	D. 11. 1.1	
✓ Interpret vector parameters as 1-D	parameters.	a block to open its block
OK. Cancel <u>H</u> elp <u>Apply</u>	-	

Step5: Setup the simulation parameters.

Simulation Format Tools Help	
Start Ctrl+T	Simulation Parameters: untitled1
Stop Simulation parameters Ctrl+E Normal	Solver Workspace I/D Diagnostics Advanced Real-Time Workshop Simulation time Start time: 0.0 Stop time: 10.0
Start time Stop time	Solver options Type: Variable-step ode45 (Dormand-Prince) Max step size: auto Min step size: auto Initial step size: auto Solver options Solver opt
Solver type	Output options Refine output Image: Concernment of the sector:

Step6: Start simulation.

Manipulating blocks

Labels and Annotations

Moving a line segment

Step1: Position the pointer on the segment you want to move.

Step2: Press and hold down the left mouse button.

Dividing a line into segments

Step1: Select the line.

Step2: Position the pointer on the line where you want the vertex.

Step3: While holding down the Shift key, press and hold down the mouse button.

Step4: Drag the pointer to the desired location.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

Actuators and Drives

13.03.2016 29 / 39

Inserting a block in a line

Step1: Position the pointer over the block and press the left mouse button.

Step2: Drag the block over the line in which you want to insert the block.

Step3: Release the mouse button to drop the block on the line.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

Actuators and Drives

Subsystems

Subsystems can hide the complexity of the subsystems from the user, which can make your model clearer. There are two ways to create Subsystems. •You can create a Subsystem by adding the Subsystem block from Signals & Systems. Then you can edit the Subsystem by doubling clicking the Subsystem block. •You can create create the subsystem by grouping blocks from an existing system.

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

13.03.2016 31 / 39

1. Use the mouse to select the blocks

2. Choose Create Subsystem from the Edit menu

	Linkoptions	- A
	Look under mask	
	Mask subsystem .	Cod-M
	Create subsystem	Ctrl+G
1	Find	Ctrl+F
	Comy model to clinboard	Cult
	Select all	Chil+A
	Clear	Delete
	Pasie	Crit V
	Conv	Ctrl+C
	Cut	Ctrl+X
	Cantrelli	Chilly
	Can't unde	CBHEZ

DC Motor, How it works?

https://www.youtube.com/watch?v=LAtPHANEfQo

Building Blocks

Equivalent Electric Circuit

We assume:

- input of the system is the voltage source (V) applied to the motor armature
- output is the rotational speed of the shaft $(\omega = \frac{d\theta}{dt})$
- rotor and shaft are assumed to be rigid.
- viscous friction torque proportional to shaft angular velocity.

Model

applying Kirchoff law to the motor system

$$V = R\,i + L\,\frac{di}{dt} + e_b \tag{1}$$

back EMF, e_b is proportional to angular velocity of shaft by a constant factor K_e ,

$$e_b = K_e \,\omega \tag{2}$$

torque generated by the motor is proportional to armature current and the strength of the magnetic field. Since magnetic field is constant, therefore,

$$T = K_t i \tag{3}$$

where K_t is torque constant.

where J and b are moment of inertia of the rotor and viscous coefficient, resp.

• The motor torque, T, is related to the armature current, i, by:

$$T = K_t i$$

• The back emf, Eb, is related to the angular velocity by:

$$e_b = K_e \omega$$

• The dynamic equations for **electrical** and **mechanical** balance from Kirchhoff's law and Newton's law are

$$\frac{di}{dt} = \frac{V}{L} - \frac{R}{L}i - \frac{k_e}{L}\omega$$
$$\frac{d\omega}{dt} = \frac{k_t}{J}i - \frac{b}{J}\omega$$

Assignment

- \bigcirc Show that the two units, Nm/A and V/rad/s, are identical.
- Oevelop a MATLAB/Simulink model of the brushed DC motor with the following parameters:

J	moment of inertia of the rotor	0.01	kg.m ²
b	motor viscous friction constant	0.1	N.m.s
K _e	electromotive force constant	0.01	V/rad/s
Kt	motor torque constant	0.01	N.m/A
R	electric resistance	1	Ω
L	electric inductance	0.5	Н

Block Mask

Simulation Results

• for a DC motor, mechanical and electrical equations are: τ

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$K_t \quad \text{torque constant} \quad \text{current,} \quad \text{supplied voltage,} \quad \text{rotor speed,} \quad \text{rotor speed,} \quad \text{rotor speed,} \quad \text{for a sp$$

• For a fixed voltage, torque-speed curves are derived from (5) & (6):

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

motor torque

• $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assign 1: numerically, $k_t :== k_t$

- slope of the torque-speed curves is $-K_m^2$
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage
- eases in disolar velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} I & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ \omega & \text{rotor speed,} \\ e_b & \text{back-emf} (e_b = K_e \omega), \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t == k_e$]
- ▶ slope of the torque-speed curves is -K²_m.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} I & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ \omega & \text{rotor speed,} \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t == k_e$]
- ▶ slope of the torque–speed curves is $-K_m^2$.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ \phi & \text{rotor speed,} \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t == k_e$]
- ▶ slope of the torque-speed curves is -K²_m.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ \phi & \text{rotor speed,} \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t == k_e$]
- slope of the torque–speed curves is $-K_m^2$.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ i & \text{rotor speed,} \\ e_b & \text{back-emf} (e_b = K_e \omega), \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t = = k_e$]
- slope of the torque–speed curves is $-K_m^2$.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage,
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ rotor speed, \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t = = k_e$]
- slope of the torque–speed curves is $-K_m^2$.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage,
- torque reduces as the angular velocity increases

• for a DC motor, mechanical and electrical equations are:

$$T = K_t i$$

$$V = R i + L \frac{di}{dt} + K_t \omega$$

$$\begin{pmatrix} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ rotor speed, \\ R, L & \text{resistance and induction.} \end{pmatrix}$$

$$T = \frac{k_t}{R} (V - K_t \omega) = \frac{k_t}{R} V - k_m^2 \omega$$
(7)

- $K_m = \frac{k_t}{\sqrt{R}}$ is the motor constant, [Assig. 1: numerically, $k_t == k_e$]
- slope of the torque–speed curves is $-K_m^2$.
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- torque increases in proportion to the applied voltage,
- torque reduces as the angular velocity increases

Torque–Speed Relation

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

Actuators and Drives

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Ahmed mnahmed@eng.zu.edu.eg goo.gl/GHZZio

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.