
A P P E N D I X

A MATLAB Basics

A.1 INTRODUCTION

MATLAB is an interactive program for scientific and engineering calculations. The
MATLAB family of programs includes the base program plus a variety of
toolboxes, a collection of special files called m-files that extend the functionality of
the base program [1-8]. Together, the base program plus the Control System Tool­
box provide the capability to use MATLAB for control system design and analysis.
Whenever MATLAB is referenced in this book, it means the base program plus the
Control System Toolbox.

Most of the statements, functions, and commands are computer-platform-inde­
pendent. Regardless of what particular computer system you use, your interaction
with MATLAB is basically the same. This appendix concentrates on this computer
platform-independent interaction. A typical session will utilize a variety of objects
that allow you to interact with the program: (1) statements and variables, (2) matri­
ces, (3) graphics, and (4) scripts. MATLAB interprets and acts on input in the form
of one or more of these objects. The goal in this appendix is to introduce each of the
four objects in preparation for our ultimate goal of using MATLAB for control sys­
tem design and analysis.

The manner in which MATLAB interacts with a specific computer system is
computer-platform-dependent. Examples of computer-dependent functions include
installation, the file structure, hard-copy generation of the graphics, the invoking
and exiting of a session, and memory allocation. Questions related to platform-
dependent issues are not addressed here. This does not mean that they are not im­
portant, but rather that there are better sources of information such as the
MATLAB User's Guide or the local resident expert.

The remainder of this appendix consists of four sections corresponding to the
four objects already listed. In the first section, we present the basics of statements
and variables. Following that is the subject of matrices. The third section presents an
introduction to graphics, and the fourth section is a discussion on the important
topic of scripts and m-files. All the figures in this appendix can be constructed using
the m-files found at the MCS website.

A.2 STATEMENTS AND VARIABLES

Statements have the form shown in Figure A.l. MATLAB uses the assignment so that
equals ("-") implies the assignment of the expression to the variable. The command

1038

Section A.2 Statements and Variables 1039

Command prompt

»variab!e=expression

»A=[1 2; 4 6] < ret >

A =
1 2
4 6

Carriage return

FIGURE A.1 MATLAB
statement form.

FIGURE A.2 Entering and displaying a
matrix A.

prompt is two right arrows," » ."A typical statement is shown in Figure A.2, where
we are entering a 2 x 2 matrix to which we attach the variable name A. The statement
is executed after the carriage return (or enter key) is pressed. The carriage return is
not explicitly denoted in the remaining examples in this appendix.

The matrix A is automatically displayed after the statement is executed follow­
ing the carriage return. If the statement is followed by a semicolon (;), the output
matrix A is suppressed, as seen in Figure A.3.The assignment of the variable A has
been carried out even though the output is suppressed by the semicolon. It is often
the case that your MATLAB sessions will include intermediate calculations for
which the output is of little interest. Use the semicolon whenever you have a need
to reduce the amount of output. Output management has the added benefit of in­
creasing the execution speed of the calculations since displaying screen output
takes time.

The usual mathematical operators can be used in expressions. The common op­
erators are shown in Table A.LThe order of the arithmetic operations can be al­
tered by using parentheses.

The example in Figure A.4 illustrates that MATLAB can be used in a "calculator"
mode. When the variable name and "=" are omitted from an expression, the result is
assigned to the generic variable cms. MATLAB has available most of the trigonomet­
ric and elementary math functions of a common scientific calculator. Type help elfun
at the command prompt to view a complete list of available trigonometric and ele­
mentary math functions; the more common ones are summarized in Table A.2.

Table A.1 Mathematical
Operators

»A=[1 2;4 6]; <—
»
»A=[1 2;4 6] «—

A =
1 2
4 6

L Semicolon suppresses
the output.

No semicolon displays
the output.

+
-
*
/
A

Addition
Subtraction
Multiplication

Division
Power

FIGURE A.3 Using semicolons to suppress the
output.

FIGURE A.4
Using the calculator
mode.

»12.4/6.9

ans =
1.7971

1 0 4 0 Appendix A MATLAB Basics

Table A.2 Common Mathematical Functions
sin(x)
sinh(x)
asin(x)
asinh(x)
cos(x)
cosh(x)
acos(x)
acosh(x)
tan(x)
tanh(x)
atan(x)
atan2(y,x)
atanh(x)
sec(x)
sech(x)
asec(x)
asech(x)
csc(x)
csch(x)
acsc(x)
acsch(x)
cot(x)
coth(x)
acot(x)

Sine
Hyperbolic sine
Inverse sine
Inverse hyperbolic sine
Cosine
Hyperbolic cosine
Inverse cosine
Inverse hyperbolic cosine
Tangent
Hyperbolic tangent
Inverse tangent
Four quadrant inverse tangent
Inverse hyperbolic tangent
Secant
Hyperbolic secant
Inverse secant
Inverse hyperbolic secant
Cosecant
Hyperbolic cosecant
Inverse cosecant
Inverse hyperbolic cosecant
Cotangent
Hyperbolic cotangent
Inverse cotangent

acoth(x)
exp(x)
log(x)
loglO(x)
log2(x)
pow2(x)
sqrt(x)
nextpow2(x)
abs(x)
angle(x)
complex(x,y)
conj(x)
imag(x)
real(x)
unwrap(x)
isreal(x)
cplxpair(x)
fix(x)
floor(x)
ceil(x)
round(x)
mod(x,y)
rem(x,y)

Inverse hyperbolic cotangent
Exponential
Natural logarithm
Common (base 10) logarithm
Base 2 logarithm and dissect floating point number
Base 2 power and scale floating point number
Square root
Next higher power of 2
Absolute value
Phase angle
Construct complex data from real and imaginary parts
Complex conjugate
Complex imaginary part
Complex real part
Unwrap phase angle
True for real array
Sort numbers into complex conjugate pairs
Round towards zero
Round towards minus infinity
Round towards plus infinity
Round towards nearest integer
Modulus (signed remainder after division)
Remainder after division

Variable names begin with a letter and are followed by any number of letters
and numbers (including underscores). Keep the name length to N characters, since
MATLAB remembers only the first N characters, where N = namelengthmax. It is
a good practice to use variable names that describe the quantity they represent. For
example, we might use the variable name vel to represent the quantity aircraft ve­
locity. Generally, we do not use extremely long variable names even though they
may be legal MATLAB names.

Since MATLAB is case sensitive, the variables M and m are not the same. By
case, we mean upper- and lowercase, as illustrated in Figure A.5. The variables M
and m are recognized as different quantities.

MATLAB has several predefined variables, including pi, Inf, NaN, i, and/.Three ex­
amples are shown in Figure A.6. NaN stands for Not-a-Number and results from unde­
fined operations. Inf represents +oo, and pi represents IT. The variable i = V — 1 is
used to represent complex numbers. The variable j = v - 1 can be used for complex
arithmetic by those who prefer it over i. These predefined variables can be inadvertent­
ly overwritten. Of course, they can also be purposely overwritten in order to free the
variable name for other uses. For instance, you might want to use i as an integer and re­
serve ; for complex arithmetic. Be safe and leave these predefined variables alone, as

»M=[1 21;
»m=[3 5 7];

FIGURE A.5
Variables are case
sensitive.

Section A.2 Statements and Variables 1041

FIGURE A.6
Three predefined
variables i, Inf, and
NaN.

»z=3+4*i

z =
3.0000 + 4.0000i

» lnf
ans =

Inf

» 0 / 0

ans =

NaN

»who

Your variables are:

A M ans m z

FIGURE A.7 Using the who function to
display variables.

there are plenty of alternative names that can be used. Predefined variables can be reset
to their default values by using clear name (e.g., clear/?/)-

The matrix A and the variable ans, in Figures A.3 and A.4, respectively, are
stored in the workspace. Variables in the workspace are automatically saved for
later use in your session. The who function gives a list of the variables in the work­
space, as shown in Figure A.7. MATLAB has a host of built-in functions. Refer to
the MATLAB User's Guide for a complete list or use the MATLAB help browser.
Each function will be described as the need arises.

The whos function lists the variables in the workspace and gives additional in­
formation regarding variable dimension, type, and memory allocation. Figure A.8
gives an example of the whos function. The memory allocation information given by
the whos function can be interpreted as follows: Each element of the 2 x 2 matrix
A requires 8 bytes of memory for a total of 32 bytes, the l x l variable ans requires
8 bytes, and so forth. All the variables in the workspace use a total of 96 bytes.

Variables can be removed from the workspace with the clear function. Using
the function clear, by itself, removes all items (variables and functions) from the
workspace; clear variables removes all variables from the workspace; clear
name] name!... removes the variables runnel, name2, and so forth. The procedure
for removing the matrix A from the workspace is shown in Figure A.9.

FIGURE A.8
Using the whos
function to display
variables.

»whos

Name

A

M

ans

m

z

Size

2x2

1x2

1x1

1x3

1x1

Bytes

32

16

8

24

16

Class

double

double

double

double

double

Attributes

complex

1042 Appendix A MATLAB Basics

FIGURE A.9
Removing the
matrix A from the
workspace.

»clear A

» w h o

Your variables are:

M ans m

Computations in MATLAB are performed in double precision. However, the
screen output can be displayed in several formats. The default output format con­
tains four digits past the decimal point for nonintegers. This can be changed by using
the format function shown in Figure A. 10. Once a particular format has been speci­
fied, it remains in effect until altered by a different format input. The output format
does not affect internal MATLAB computations. On the other hand, the number of
digits displayed does not necessarily reflect the number of significant digits of the
number. This is problem-dependent, and only the user can know the true accuracy
of the numbers input and displayed by MATLAB. Other display formats (not shown
in Figure A.10) include format long g (best of fixed or floating point format with 14
digits after the decimal point), format short g (same as format long g but with 4 dig­
its after the decimal point), format hex (hexadecimal format), format bank (fixed
format for dollars and cents), format rat (ratio of small integers) and format (same
as format short).

Since MATLAB is case sensitive, the functions who and WHO are not the same
functions. The first function, who, is a built-in function, and typing who lists the vari­
ables in the workspace. On the other hand, typing the uppercase WHO results in the
error message shown in Figure A.ll. Case sensitivity applies to all functions.

FIGURE A.10
Output format
control illustrates
the four forms of
output.

» p l
ans =

3.1416 «- 4-digit scaled fixed point

»format long; pi
ans =

3.141592653589793-«- 15-digit scaled fixed point

»forrnat short e; pi
ans =

3.1416e+00 M— 4-digit scaled floating point

»format long e; pi .
ans= T

3.141592653589793e+000

15-digit scaled floating point

Section A.3 Matrices 1043

FIGURE A.11
Function names are
case sensitive.

» W H O
??? Undefined
function or variable 'WHO'.

»Who
??? Undefined function or
variable 'Who'.

A.3 MATRICES

MATLAB is short for matrix laboratory. Although we will not emphasize the ma­
trix routines underlying our calculations, we will learn how to use the interactive ca­
pability to assist us in the control system design and analysis. We begin by
introducing the basic concepts associated with manipulating matrices and vectors.

The basic computational unit is the matrix. Vectors and scalars can be viewed as
special cases of matrices. A typical matrix expression is enclosed in square brackets,
[•]. The column elements are separated by blanks or commas, and the rows are sep­
arated by semicolons or carriage returns. Suppose we want to input the matrix

A =

One way to input A is shown in Figure A. 12. The input style in Figure A. 12 is not
unique.

Matrices can be input across multiple lines by using a carriage return following
the semicolon or in place of the semicolon. This practice is useful for entering large
matrices. Different combinations of spaces and commas can be used to separate the
columns, and different combinations of semicolons and carriage returns can be used
to separate the rows, as illustrated in Figure A. 12.

1
log(- l)

_asin(0.8)

- 4 /
sin(7r/2)

acos(0.8)

V 2

cos(7r/3)

exp(0.8)

FIGURE A.12
Complex and real
matrix input with
automatic
dimension and type
adjustment.

» A = [1 , -4*j, sqrt(2); <
log(-1) sin(pi/2) cos(pi/3) +—
asin(0.5), acos(0.8) exp(0.8)]

3 X 3 complex matrix

ll
A =

1.0000
0 + 3.1416i
0.5236

»A=[1 2;4 5] 4-
A =

1 2
4 5

Carriage return

0 - 4.0000i
1.0000
0.6435

1.4142
0.5000
2.2255

2 X 2 real matrix

Appendix A MATLAB Basics

No dimension statements or type statements are necessary when using matri­
ces; memory is allocated automatically. Notice in the example in Figure A. 12 that
the size of the matrix A is automatically adjusted when the input matrix is rede­
fined. Also notice that the matrix elements can contain trigonometric and elemen­
tary math functions, as well as complex numbers.

The important basic matrix operations are addition and subtraction, multiplica­
tion, transpose, powers, and the so-called array operations, which are element-to-
element operations. The mathematical operators given in Table A.l apply to
matrices. We will not discuss matrix division, but be aware that MATLAB has a left-
and right-matrix division capability.

Matrix operations require that the matrix dimensions be compatible. For matrix
addition and subtraction, this means that the matrices must have the same dimen­
sions. If A is an n X m matrix and B is a p x r matrix, then A ± B is permitted only
if n = p and m = r. Matrix multiplication, given by A * B, is permitted only if
m = p. Matrix-vector multiplication is a special case of matrix multiplication. Sup­
pose b is a vector of length/?. Multiplication of the vector b by the matrix A, where A
is an n X m matrix, is allowed if m = p. Thus, y = A * b is the n x 1 vector solution
of A * b. Examples of three basic matrix-vector operations are given in Figure A. 13.

The matrix transpose is formed with the apostrophe ('). We can use the matrix
transpose and multiplication operation to create a vector inner product in the fol­
lowing manner. Suppose w and v are / « x l vectors. Then the inner product (also
known as the dot product) is given by w' * v. The inner product of two vectors is a
scalar. The outer product of two vectors can similarly be computed as w * v'. The
outer product of two m X 1 vectors is an m X m matrix of rank 1. Examples of
inner and outer products are given in Figure A. 14.

The basic matrix operations can be modified for element-by-element operations
by preceding the operator with a period. The modified matrix operations are known

FIGURE A.13
Three basic matrix
operations:
addition,
multiplication, and

»A=[1 3;

ans =
5 -4
15 9

»b=[1 ;5];

ans =
16
50

ans =
1 5
3 9

5 9]; B̂ =14 -7; 10 01;
Matrix addition

Matrix multiplication

Matrix transpose

Section A.3 Matrices 1045

»x=[5;pi;. sin(pi/2)]; y=

ans =
-27.9384

ans =
3.0327
1.9055
0.6065

-65.0000
-40.8407
-13.0000

=[exp(-0.5);

49.3480
31.0063

9.8696

-13 piA2];
Inner product

Outer product

FIGURE A.14 Inner and outer products of two vectors.

Table A.3 Mathematical
Array Operators

+ Addition
Subtraction

.* Multiplication

./ Division

.A Power

as array operations. The commonly used array operators are given in Table A.3. Ma­
trix addition and subtraction are already element-by-element operations and do not
require the additional period preceding the operator. However, array multiplication,
division, and power do require the preceding dot, as shown in Table A.3.

Consider A and B as 2 x 2 matrices given by

«21

«12

«22
B

* n

*21

bn

*22

Then, using the array multiplication operator, we have

A.*B = «11*11

«21*21

«12*12

«22*22

The elements of A.* B are the products of the corresponding elements of A and B.
A numerical example of two array operations is given in Figure A.15.

FIGURE A. 15
Array operations.

-6
14
30

» A . A 2
a n s = 4

1
4
9

Array multiplication

Array raised to a power

1046 Appendix A MATLM3 Basics

FIGURE A.16
The colon notation.

Starting value
I I

) <=[xi:dx:xf]

t
Increment

.
Final value

A.4 GRAPHICS

Before proceeding to the important topic of graphics, we need to introduce the
notion of subscripting using colon notation. The colon notation, shown in Figure A.16,
allows us to generate a row vector containing the numbers from a given starting value,
Xj, to a final value, xf, with a specified increment, dx.

We can easily generate vectors using the colon notation, and as we shall soon
see, this is quite useful for developing x-y plots. Suppose our objective is to generate
a plot of v = x sin(x) versus x for x = 0, 0.1, 0.2,..., 1.0. Our first step is to gener­
ate a table of x-y data. We can generate a vector containing the values of x at which
the values of y(x) are desired using the colon notation, as illustrated in Figure A.17.
Given the desired x vector, the vector y(x) is computed using the multiplication
array operation. Creating a plot of y = x sin(.x:) versus x is a simple step once the
table of x-y data is generated.

Graphics plays an important role in both the design and analysis of control systems.
An important component of an interactive control system design and analysis tool
is an effective graphical capability. A complete solution to the control system design
and analysis will eventually require a detailed look at a multitude of data types in
many formats. The objective of this section is to acquaint the reader with the basic

FIGURE A.17
Generating vectors
using the colon
notation.

»x=[0:0. '
» [x y] J

:1]';y=x.*sin(x);

ans =
0 0

0.1000 0.0100

Starting value Final value

Increment
I

U 1 x=[0:0.1:1]'

0.2000 0.0397
0.3000 0.0887
0.4000 0.1558
0.5000 0.2397
0.6000 0.3388
0.7000 0.4510
0.8000 0.5739
0.9000 0.7050
1.0000 0.8415

Section A.4 Graphics 1047

Table A.4 Plot Formats

plot(x,y) Plots the vector x versus the vector y.
semilogx(x,y) Plots the vector x versus the vector y.

The *-axis is log1();the y-axis is linear.
semilogy(x,y) Plots the vector x versus the vector y.

The .v-axis is linear; the y-axis is logjo.
loglog(x,y) Plots the vector x versus the vector y.

Creates a plot with logl0scales on both axes.

x-y plotting capability of MATLAB. More advanced graphics topics are addressed
in the chapter sections on MATLAB.

MATLAB uses a graph display to present plots. The graph display is activated
automatically when a plot is generated using any function that generates a plot (e.g.,
the plot function). The plot function opens a graph display, called a FIGURE win­
dow. You can also create a new figure window with the figure function. Multiple fig­
ure windows can exist in a single MATLAB session; the function figure (n) makes n
the current figure. The plot in the graph display is cleared by the elf function at the
command prompt. The shg function brings the current figure window forward.

There are two basic groups of graphics functions. The first group, shown in
Table A.4, specifies the type of plot. The list of available plot types includes the x-y
plot, semilog plots, and log plots. The second group of functions, shown in Table A.5,
allows us to customize the plots by adding titles, axis labels, and text to the plots and
to change the scales and display multiple plots in subwindows.

The standard x-y plot is created using the plot function. The x-y data in Figure A. 17
are plotted using the plot function, as shown in Figure A.18. The axis scales and line
types are automatically chosen. The axes are labeled with the xlabel and ylabel func­
tions; the title is applied with the title function. The legend function puts a legend on
the current figure. A grid can be placed on the plot by using the grid on function.
A basic x-y plot is generated with the combination of functions plot, legend, xlabel,
ylabel, title, and grid on.

Multiple lines can be placed on the graph by using the plot function with multi­
ple arguments, as shown in Figure A.19. The default line types can also be altered.
The available line types are shown in Table A.6.The line types will be automatically

Table A.5 Functions for Customized Plots

title('text') Puts vtexf at the top of the plot
legend (stringl, sthng2,.. .) Puts a legend on current plot using specified strings as labels
xlabel('text') Labels the x-axis with 'text'
ylabel('text') Labels the y-axis with 'text1

text(p1 ,p2, 'text') Adds 'text' to location (pl,p2), where (pl,p2) is
in units from the current plot

subplot Subdivides the graphics window
grid on Adds grid lines to the current figure
grid Off Removes grid lines from the current figure
grid Toggles the grid state

1048 Appendix A MATI-AB Basics

Table A.6 Commands for Line
Types for Customized Plots

Solid line
Dashed line

: Dotted line
_-. Dashdot line

chosen unless specified by the user. The use of the text function and the changing of
line types are illustrated in Figure A. 19.

The other graphics functions—loglog, semilogx, and semilogy—are used in a
fashion similar to that of plot. To obtain an x-y plot where the x-axis is a linear scale
and the y-axis is a log10 scale, you would use the semilogy function in place of the
plot function. The customizing features listed in Table A.5 can also be utilized with
the loglog, semilogx, and semilogy functions.

The graph display can be subdivided into smaller subwindows. The function
subplot(m,n,p) subdivides the graph display into an m X n grid of smaller subwin­
dows. The integer p specifies the window, numbered left to right, top to bottom, as illus­
trated in Figure A.20, where the graphics window is subdivided into four subwindows.

»x=[0:0.1:1]';
»y=x.*sin(x);
»plot(x,y)
»title('Plot of x sin(x) vs x')
»xlabel('x')
»ylabel('y')
»gr id on

(a)

» x=[0:0.1:1]';
» y1=x.*sin(x); y2=sin(x);

Dashed line for yl
Dashed-dot line for y2

»text(0.1,0.85,'y_1 = x sin(x) —')
»text(0.1,0.80,'y_2 = sin(x) A_._')
» xlabel('x'), ylabel('y_1 and y_2'), grid on

(a)

(b)

FIGURE A.18 (a) MATLAB commands, (b) A basic x-y
plot of x sin(x) versus x.

0.9

0.8

0.7

0.6

0.3

0.2

0.1

0

y, = xsin(x) —
y2 = sin(x) _ ._

1 ...^v-

r_U :/"'/
Text indicating lines

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I

(b)

FIGURE A.19 (a) MATLAB commands, (b) A basic x-y
plot with multiple lines.

Section A.5 Scripts 1049

FIGURE A.20
Using subplot to
create a 2 x 2
partition of the
graph display.

A.5 SCRIPTS

Up to this point, all of our interaction with MATLAB has been at the command
prompt. We entered statements and functions at the command prompt, and
MATLAB interpreted our input and took the appropriate action. This is the
preferable mode of operation whenever the work sessions are short and non-
repetitive. However, the real power of MATLAB for control system design and
analysis derives from its ability to execute a long sequence of commands stored
in a file. These files are called m-files, since the filename has the form
filename.m. A script is one type of m-file. The Control System Toolbox is a col­
lection of m-files designed specifically for control applications. In addition to the
preexisting m-files delivered with MATLAB and the toolboxes, we can develop
our own scripts for our applications. Scripts are ordinary ASCII text files and are
created using a text editor.

A script is a sequence of ordinary statements and functions used at the com­
mand prompt level. A script is invoked at the command prompt level by typing in
the filename or by using the pull-down menu. Scripts can also invoke other scripts,
When the script is invoked, MATLAB executes the statements and functions in the
file without waiting for input at the command prompt. The script operates on vari­
ables in the workspace.

Suppose we want to plot the function y(t) = sin at, where a is a variable that
we want to vary. Using a text editor, we write a script that we call plotdata.m, as

1050 Appendix A MATLAB Basics

FIGURE A.21
A simple script to
plot the function
y(f) = sin at.

»alpha=50;
»plotdata

plotdata.m
' r

% This is a script to plot the function y=sin(alpha*t).
%
% The value of alpha must exist in the workspace prior
% to invoking the script.
%
t=[0:0.01:1];
y=sin(alpha*t);
plot(t.y)
xlabel('Time (sec)')
ylabel('y(t) = sin(\alpha t)')
grid on

shown in Figure A.21, then input a value of a at the command prompt, placing a in
the workspace. Then we execute the script by typing in plotdata at the command
prompt; the script plotdata.m will use the most recent value of a in the workspace.
After executing the script, we can enter another value of a at the command prompt
and execute the script again.

Your scripts should be well documented with comments, which begin with a
%. Put a header in the script; make sure the header includes several descriptive
comments regarding the function of the script, and then use the help function to
display the header comments and describe the script to the user, as illustrated in
Figure A.22.

Use plotdata.m to develop an interactive capability with a as a variable, as
shown in Figure A.23. At the command prompt, input a value of a = 10 followed by
the script filename, which in this case is plotdata. The graph of y(t) = sin at is auto­
matically generated. You can now go back to the command prompt, enter a value of
a = 50, and run the script again to obtain the updated plot.

A limited subset of TeX1 characters are available to allow you to annotate plots
with symbols and mathematical characters. Table A.7 shows the available symbols.
Figure A.21 illustrates the use of '\alpha' to generate the a character in the y-axis
label. The 'V character preceeds all TeX sequences. Also, you can modify the charac­
ters with the following modifiers:

• \bf—bold font

Q \it—italics font

Q \rm—normal font

Q \fontname—specify the name of the font family to use

• \fontsize—specify the font size

• \color—specify color for succeeding characters

lTeX is a trademark of the American Mathematical Society.

file://'/alpha'
file:///fontname
file:///fontsize
file:///color

Section A.5 Scripts 1051

FIGURE A.22
Using the help
function.

»he lp plotdata

This is a script to plot the function y=sin(alpha*t).

The value of alpha must exist in the workspace prior
to invoking the script.

— Command prompt

»alpha=10; plotdata

Script filename —

»alpha=50; plotdata

FIGURE A.23
An interactive
session using a
script to plot
the function
y(t) = sin at.

Graph display

Graph display

Subscripts and superscripts arc obtained with "_" and "A", respectively. For exam­
ple, ylabel('y_l and y_2') generates the y-axis label shown in Figure A. 19.

The graphics capability of MATLAB extends beyond the introductory material
presented here. A table of MATLAB functions used in this book is provided in
Table A.8.

1052 Appendix A MATLAB Basics

Table A.7 TeX Symbols and Mathematics Characters

Character
Sequence

\alpha

\beta

\gamma

\delta

\epsilon

\zeta

\eta

\theta

wartheta

Mota

\kappa

\lambda

\mu

Vnu

\xi

\pi

\rho

\sigma

Warsigma

Mau

\equiv

Mm

\otimes

\cap

\supset

Vint

Symbol

a

0
y

8

e

£

•n
e
<&

i

K

X

M<

V

e
IT

P

CT

i
T

S3

3

®

n
D

1

Character
Sequence

\upsilon

\phi

\chi

\psi

\omega

\Gamma

\Delta

VTheta

XLambda

\Xi

\Pi

\Sigma

\Upsilon

\Phi

\Psi

\Omega

\forall

\exists

\ni

\cong

\approx

\Re

\oplus

\cup

\subseteq

\in

Symbol

V

<P

X

*

(0

r
A

e
A

0

n
2

Y

O

*

i)

V

3

3

S3

»

Dt
©

u
c
3

Character
I Sequence

Vsim

\leq

\infty

\clubsuit

\diamondsuit

\heartsuit

\spadesuit

Meftrightarrow

Meftarrow

\uparrow

Vrightarrow

Symbol

~

^

00

*

•

V

A

<-»

<—

T
->

\downarrow

\circ

\pm

\geq

\propto

\partial

\bullet

\div

\neq

\aleph

\wp

\oslash

\supseteq

I
o

+

:̂

oc

d

*

5*

K

P

0

D

\subset

\o

C

o

file:///alpha
file:///beta
file:///gamma
file:///delta
file:///epsilon
file:///zeta
file:///theta
file:///kappa
file:///lambda
file:///sigma
file:///equiv
file:///otimes
file:///supset
file:///upsilon
file:///omega
file:///Gamma
file:///Delta
file:///Sigma
file:///Upsilon
file:///Omega
file:///forall
file:///exists
file:///cong
file:///approx
file:///oplus
file:///subseteq
file:///infty
file:///clubsuit
file:///diamondsuit
file:///heartsuit
file:///spadesuit
file:///uparrow
file:///downarrow
file:///circ
file:///propto
file:///partial
file:///bullet
file:///aleph
file:///oslash
file:///supseteq
file:///subset

Section A.5 Scripts 1053

Table A.8 MATLAB Functions

Function Name Function Description
abs
acos
ans
asin
atan
atan2
axis
bode
c2d

clear
elf
con]
conv
cos
ctrb
diary
d2c

eig
end
exp
expm
eye
feedback
for
format
grid on
help
hold on
i
imag
impulse
inf
]
legend
linspace
load
log
Iog10
log log
logspace
Isim

margin

max
mesh
meshgrid
min
mi n real

Computes the absolute value
Computes the arccosine
Variable created for expressions
Computes the arcsine
Computes the arctangent (2 quadrant)
Computes the arctangent (4 quadrant)
Specifies the manual axis scaling on plots
Generates Bode frequency response plots
Converts a continuous-time state variable system representation to a
discrete-time system representation

Clears the workspace
Clears the graph window
Computes the complex conjugate
Multiplies two polynomials (convolution)
Computes the cosine
Computes the controllability matrix
Saves the session in a disk file
Converts a discrete-time state variable system representation to a
continuous-time system representation

Computes the eigenvalues and eigenvectors
Terminates control structures
Computes the exponential with base e
Computes the matrix exponential with base e
Generates an identity matrix
Computes the feedback interconnection of two systems
Generates a loop
Sets the output display format
Adds a grid to the current graph
Prints a list of HELP topics
Holds the current graph on the screen

Computes the imaginary part of a complex number
Computes the unit impulse response of a system
Represents infinity
V^T
Puts a legend on the current plot
Generates linearly spaced vectors
Loads variables saved in a file
Computes the natural logarithm
Computes the logarithm base 10
Generates log-log plots
Generates logarithmically spaced vectors
Computes the time response of a system to an arbitrary input and initial
conditions

Computes the gain margin, phase margin, and associated crossover
frequencies from frequency response data

Determines the maximum value
Creates three-dimensional mesh surfaces
Generates arrays for use with the mesh function
Determines the minimum value
Transfer function pole-zero cancellation

Table A.8 continued

1054 Appendix A MATLAB Basics

Table A.8 Continued

Function Name Function Description
NaN
ngrid
nichols
num2str
nyquist
obsv
ones
pade
parallel
plot
pole
poly
polyval
printsys

pzmap
rank
real
residue
rlocfind
rlocus
roots
semilogx

semilogy

series
shg
sin
sqrt
ss
step
subplot
tan
text
title
tf
who
whos
xlabel
ylabel
zero
zeros

Representation for Not-a-Number
Draws grid lines on a Nichols chart
Computes a Nichols frequency response plot
Converts numbers to strings
Calculates the Nyquist frequency response
Computes the observability matrix
Generates a matrix of integers where all the integers are 1
Computes an nth-order Pade approximation to a time delay
Computes a parallel system connection
Generates a linear plot
Computes the poles of a system
Computes a polynomial from roots
Evaluates a polynomial
Prints state variable and transfer function representations of linear
systems in a pretty form

Plots the pole-zero map of a linear system
Calculates the rank of a matrix
Computes the real part of a complex number
Computes a partial fraction expansion
Finds the gain associated with a given set of roots on a root locus plot
Computes the root locus
Determines the roots of a polynomial
Generates an x-y plot using semilog scales with the .v-axis logU) and the
y-axis linear

Generates an x-y plot using semilog scales with the y-axis logio and the
.v-axis linear

Computes a series system connection
Shows graph window
Computes the sine
Computes the square root
Creates a state-space model object
Calculates the unit step response of a system
Splits the graph window into subwindows
Computes the tangent
Adds text to the current graph
Adds a title to the current graph
Creates a transfer function model object
Lists the variables currently in memory
Lists the current variables and sizes
Adds a label to the x-axis of the current graph
Adds a label to the y-axis of the current graph
Computes the zeros of a system
Generates a matrix of zeros

Section A.5 Scripts 1055

MATLAB BASICS: PROBLEMS

A.l Consider the two matrices

A =
4 2TT

6/ 10 + Vlj_

~6j -13TT~

_1T 16
B =

Using MATLAB, compute the following:

(a) A + B (b) AB
(c) A2 (d) A'
(e) B~x (f) B'A'
(g) A2 + fl2 - Afl

A.2 Consider the following set of linear algebraic equations:

5.x + 6y + lOz = 4,

-3x + Uz = 10,

-ly + 21z = 0.

Determine the values of x, y, and z so that the set of
algebraic equations is satisfied. {Hint: Write the equa­
tions in matrix vector form.)

A.3 Generate a plot of

y(x) - e_0-5ir sin OJX,

where co = lOrad/s, andO s x :£ 10.Utilize the colon
notation to generate the x vector in increments of 0.1.

A.4 Develop a MATLAB script to plot the function

4 4
y(x) = — cos o»x H cos 3wx.

where co is a variable input at the command prompt.
Label the x-axis with time (sec) and the y-axis with
y(x) = (A/IT) * cos(wx) + (4/9TT) * cos(3o>x). Include
a descriptive header in the script, and verify that the
help function will display the header. Choose
to = 1,3,10 rad/s and test the script.

A.5 Consider the function

y(x) - 10 + 5e~xcos((ox + 0.5).

Develop a script to co-plot y(x) for the three values of
co = 1,3,10 rad/s with 0 s j < 5 seconds.The final
plot should have the following attributes:

Title
x-axis label
3 -̂axis label
Line type

Grid

y(x) = 10 + 5 exp(-x) * cos(wx + 0.5)
Time (sec)
y(x)
co = 1: solid line
co - 3: dashed line
co = 10: dotted line
grid on

