Exam Model: 4629

Zagazig University, Faculty of Engineering Final Exam

Academic Year: 2016/2017

Specialization: Computer & Systems Eng.

Course Name: Robotics

Course Name: CSE629/CSE514/CSE513

Examiner: Dr. Mohammed Nour

Date: 04/02/2017 Exam Time: 3 hours No. of Pages: 6 No. of Questions: 5 Full Mark: [70]

Please	answer	all	questions.	Use	3	decimal	digits	approximation.

- > Use your answer sheet as a draft for solutions. Attach last exam page to it.
- ⊳ Mark your answers for all questions in the table provided in the last page.

Question	1.	[16 Marks]
QUESTION	т.	I TO MIGHTS

 (2×8)

- 1. Which of the following terms refers to the rotational motion of a robot arm?
 - a) swivel
- b) axle
- c) roll

- d) vaw
- 2. What is the name for the space inside which a robot unit operates?
 - a) environment
- b) spatial base
- c) danger zone
- d) work envelop
- 3. Which of the following terms is not one of the five basic parts of a robot?
 - a) peripheral tools
- b) end effectors
- c) controller
- d) sensor
- 4. The number of moveable joints in the base, the arm, and the end effectors of the robot determines?
 - a) degrees of freedom b) operational limits
- c) flexibility
- d) cost
- 5. For a robot unit to be considered a functional industrial robot, typically, how many degrees of freedom would the robot have?
 - a) three
- b) four
- c) six

- d) eight
- 6. Which of the basic parts of a robot unit would include the computer circuitry that could be programmed to determine what the robot would do?
 - a) controller
- b) arm

- c) end effector
- d) drive
- 7. End effectors can be classified into two categories which are...
 - a) elbows and wrists

b) grippers and end of arm tooling

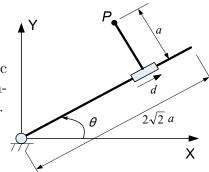
c) grippers and wrists

- d) end of arm tooling and elbows
- 8. The amount of weight that a robot can lift is called...
 - a) tonnage
- b) payload
- c) dead lift
- d) horsepower

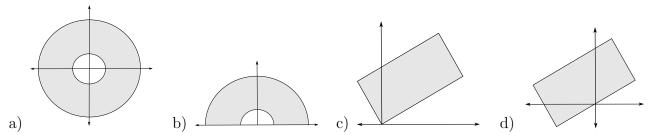
Question 2. [8 Marks]

 (2×4)

A 2-DOF planar manipulator has a rotational joint and a prismatic joint. The two links are perpendicular to each other and their dimensions are as indicated. P is the tip (end-effector) of the manipulator.



9. This manipulator workspace is sketched as:



10. The dimensions of the workspace can be mathematically expressed as:

a)
$$x^2 + y^2 \le 8a^2$$

b)
$$x + y \le a \cos \theta$$

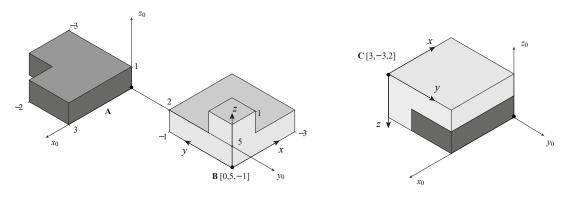
c)
$$a^2 < x^2 + y^2 < (3a)^2$$

d)
$$x \le 2\sqrt{2} a$$
 and $y \le a$

Question 3. $[10 \,\mathrm{Marks}]$

$$(2+2+1+1+2+2)$$

Consider the pose of the objects A and B in space, as shown on the left. The goal is to displace object B into a new pose C on A, so that both objects are connected as shown on the right:



11. The homogeneous transformation matrix \mathbf{H}_{B}^{0} to represent \mathbf{B} w.r.t. frame 0 is:

a)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 2 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

12. The homogeneous transformation matrix \mathbf{H}_C^0 to represent C w.r.t. frame 0 is:

a)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 2 \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 5 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & -1 & 0 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & -1 & 0 & 8 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

13. A sequence of transformations that reaches the desired pose is:

a)
$$\mathbf{C} = T(3, 2, 1) R_x \left(\frac{\pi}{2}\right)$$

b)
$$\mathbf{C} = T(-3, 0, -1) R_x \left(\frac{\pi}{2}\right)$$

c)
$$\mathbf{C} = T(3, 2, 1) R_x(\pi)$$

d)
$$\mathbf{C} = T(0, -5, 1) R_x(\pi)$$

Consider the following homogeneous transformation matrix F and rotation matrix R:

$$\mathbf{F} = \begin{bmatrix} x_1 & 0 & -1 & 5 \\ x_2 & 0 & 0 & 3 \\ x_3 & -1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} x_1 & 0 & -1 \\ x_2 & 0 & 0 \\ x_3 & -1 & 0 \end{bmatrix}$$

14. We can split the transformation matrix \mathbf{F} into:

a)
$$\begin{bmatrix} 0 & -1 & 5 \\ 0 & 0 & 3 \\ -1 & 0 & 2 \end{bmatrix}$$
 and
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

b)
$$\begin{bmatrix} x_1 & 0 & -1 \\ x_2 & 0 & 0 \\ x_3 & -1 & 0 \end{bmatrix}$$
 and $\begin{bmatrix} 5 \\ 3 \\ 2 \end{bmatrix}$

- c) translation followed by a rotation
- d) both b) and c)

15. In the rotation matrix \mathbf{R} :

a) $Rank(\mathbf{R}) = 4$

- b) $\mathbf{R}\mathbf{R}^T = \mathbf{I}$
- c) dot product of any two columns is one
- d) cross product of any two rows is zero

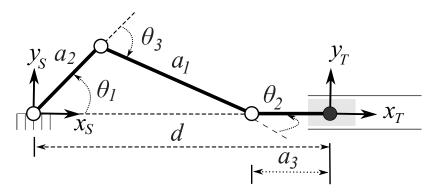
16. In the rotation matrix **R**, values of x_1, x_2 and x_3 are calculated as:

- a) 1, 0, 0
- b) 0, 1, 0
- c) 0, 0, 1
- d) 1, 1, 1

Question 4. [12 Marks]

(2+2+4+4)

Consider the slider-crank mechanism shown below with θ_1 as **actuated** joint and $\{x_S, y_S\}$ is the base frame and $\{x_T, y_T\}$ is the tool frame:



17. This mechanism has · · · · · degrees of freedom.

a) one

b) two

- c) three
- d) four

18. Gruebler formula can not be used because:

- a) the mechanism moves in one dimension (in the x-axis direction) only.
- b) it is used with 2D parallel mechanisms.
- c) it is used with either 3D closed chains manipulators.
- d) it is applicable for inverse kinematics.

19. the manipulator forward kinematics (i.e. given θ_1 find $\begin{bmatrix} x_T & y_T \end{bmatrix}^T$)

a)
$$a_3 + \frac{a_2 \sin(\theta_1 + \theta_2)}{\sin \theta_1}$$
 b) $\frac{a_2 \sin(\theta_1 + \theta_2)}{\sin \theta_1}$ c) $a_2 \sin(\theta_1 + \theta_2)$ d) $d \sin(\theta_1)$

b)
$$\frac{a_2 \sin(\theta_1 + \theta_1)}{\sin \theta_1}$$

c)
$$a_2 \sin(\theta_1 + \theta_2)$$

20. the manipulator inverse kinematics (i.e. given $[x_T \quad y_T]^T$ find θ_1)

a)
$$\cos(a^2 + a_2^2 - a_1^2)$$

b)
$$a_2^2 + a^2 - 2 a_2 a \cos \theta_1$$

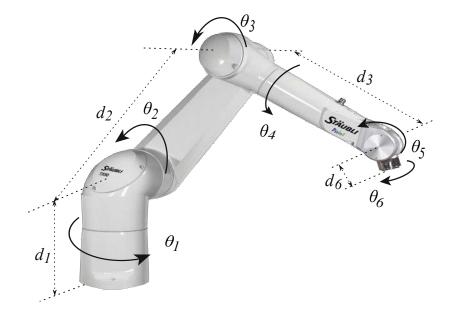
c)
$$2a_2a\cos\theta$$

a)
$$\cos(a^2 + a_2^2 - a_1^2)$$
 b) $a_2^2 + a^2 - 2a_2 a \cos \theta_1$ c) $2a_2 a \cos \theta_1$ d) $\arccos\left[\frac{a^2 + a_2^2 - a_1^2}{2a_2 a}\right]$

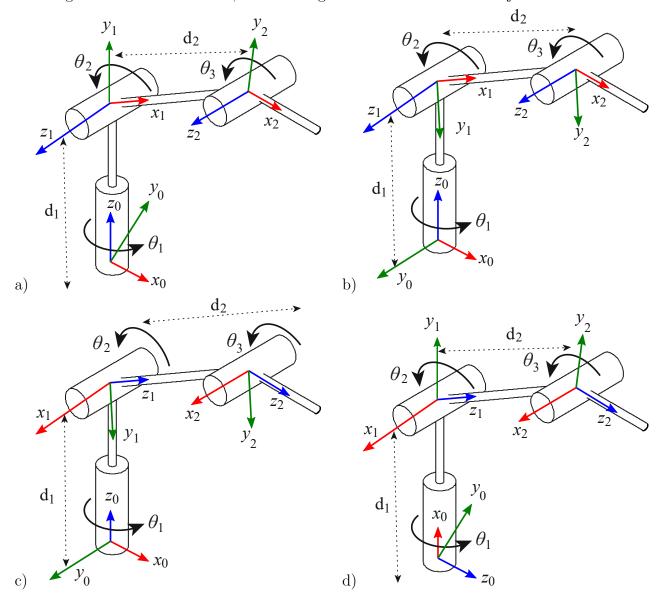
Question 5. [24 Marks]

 (3×8)

The Stäubli robot is an anthropomorphic robot with a spherical wrist as shown with its dimensions:



21. According to the DH conventions, we can assign frames to the first three joints as:



22. The DH parameters of the **spherical** wrist joints:

Exam Model: 4629

	Link	$ a_i $	α_i	d	θ	i
a)	4	0	-90	0 0	θ_4	4
a_j	5	0	90	0	θ	5
	6	0	0	d_{ϵ}	θ	6
	Link	a_i	α_i	d_i	θ_i	
c)	4	0	0	d_4	θ_4	
C)	5	0	0	0	θ_5	
	6	d_2	90	d_6	θ_6	

					_		_	
	Link	a_i	α_i	6	l_i	ϵ	θ_i	
b)	4	0	90	a	l_4	θ	θ_4	
D)	5	0	90	0		θ_5		
	6	0	0	a	l_6	θ) ₆	
	Link	a_i	α	i	d	i	θ_i	
d)	4	0	90)	d	1	θ_4	_
u)	5	0	-90)	0	1	θ_5	
	6	0	()	d_{ϵ}	ີລ	θ_6	-

23. the homogeneous transformation matrices A_3 is found as:

a)
$$\begin{bmatrix} c_3 & 0 & s_3 & 0 \\ s_3 & 0 & -c_3 & 0 \\ 0 & 1 & 0 & d_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} c_3 & -s_3 & 0 & d_3 c_3 \\ s_3 & c_3 & 0 & d_3 s_3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} c_3 & 0 & s_3 & 0 \\ s_3 & 0 & -c_3 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 d)
$$\begin{bmatrix} s_3 & 0 & c_3 & 0 \\ c_3 & 0 & -s_3 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Supplementary Material

Note: you may need some or none of these identities:

$$R_Z = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad R_Y = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}, \quad R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$A_i = \begin{bmatrix} \cos\theta_i & -\cos\alpha_i \sin\theta_i & \sin\alpha_i \sin\theta_i & a_i \cos\theta_i \\ \sin\theta_i & \cos\alpha_i \cos\theta_i & -\sin\alpha_i \cos\theta_i & a_i \sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 1 \end{bmatrix}$$

$$\cos(a \pm b) = \cos(a)\cos(b) \mp \sin(a)\sin(b)$$

$$\sin(a \pm b) = \sin(a)\cos(b) \pm \cos(a)\sin(b)$$

$$\sin(\theta) = -\sin(-\theta) = -\cos(\theta + 90^\circ) = \cos(\theta - 90^\circ)$$

$$\cos(\theta) = \cos(-\theta) = \sin(\theta + 90^\circ) = -\sin(\theta - 90^\circ)$$

$$\cos^2(\theta) + \sin^2(\theta) = 1$$
if $\cos(\theta) = b$, then $\theta = \operatorname{atan2}\left(\pm\sqrt{1-b^2},b\right)$
if $\sin(\theta) = b$, then $\theta = \operatorname{atan2}\left(b,\pm\sqrt{1-b^2}\right)$
if $a\cos(\theta) + b\sin(\theta) = c$, then $\theta = \operatorname{atan2}\left(b,a\right) + \operatorname{atan2}\left(\pm\sqrt{a^2 + b^2 - c^2},c\right)$
if $a\cos(\theta) - b\sin(\theta) = 0$, then $\theta = \operatorname{atan2}\left(a,b\right) + \operatorname{atan2}\left(-a,-b\right)$
For a triangle: $A^2 = B^2 + C^2 - 2BC\cos(a)$, $\frac{\sin(a)}{b} = \frac{\sin(b)}{D} = \frac{\sin(c)}{C}$

Exam Model: 4629

اسم الطالب:		6794	Total
 J	س الجلوس	ه نموذج الاختبار	2
	7 8	8	4
	2 0	2 2	3
	3 4	4	2
التاريخ:	1 2	1 2	1
' '	احاد عشرات مئات الاف	احاد عشرات مئات آلاف	Question

