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Lecture: 8

Robot Inverse Kinematics (cont.)

Geometric Approach

Algebraic Approach
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Robot Inverse Kinematics
Algebraic Solution

Algebraic Solution

Find the values of joint parameters that will put the tool frame at a desired position and orientation
(within the workspace)

Given the transformation matrix: H =

[

R3×3 T3×1

0 1

]

,R 2 SO(3)

Find all solutions to: T 0
n (q1, · · · , qn) = H

Noting that: T 0
n (q1, · · · , qn) = A1(q1) · · ·An(qn)

This gives 12 (nontrivial) equations with n unknowns

with end effector position at T3×1

and its orientation is obtained as:

ψ = atan2

(

R21

R11

)

, θ = atan2

(

−R31 sin(ψ)

R21

)

, φ = atan2

(

R32

R33

)

.
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Robot Inverse Kinematics
Example: the Stanford manipulator

DH Parameters:

link ai αi di θi

1 0 -90 0 θ1
2 0 90 d2 θ2
3 0 0 d3 0
4 0 -90 0 θ4
5 0 90 0 θ5
6 0 0 d6 θ6

From which we get the transformation matrix (in general form):

H0
6 =

2

6

6

4

r11 r12 r13 dx
r21 r22 r23 dy
r31 r32 r33 dz
0 0 0 1

3

7

7

5

= [rij ] ,
i = 1, · · · , 4,
j = 1, · · · , 4

d2 = 0.154, d6 = 0.263
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Robot Inverse Kinematics

For a given:

H0
6 =

2

6

6

4

0 1 0 −0.154
0 0 1 0.763
1 0 0 0
0 0 0 1

3

7

7

5

Find q = [θ1, θ2, d3, θ4, θ5, θ6]
T
.

We have 12 non-trivial equations:

c1 [c2 (c4c5c6 − s4s6)− s2s5c6]− d2 (s4c5c6 + c4s6) = 0

s1 [c2 (c4c5c6 − s4s6)− s2s5c6] + c1 (s4c5c6 + c4s6) = 0

−s2 (c4c5c6 − s4s6)− c2s5c6 = 1

c1 [−c2 (c4c5s6 + s4c6) + s2s5s6]− s1 (−s4c5s6 + c4c6) = 1

−s1 [−c2 (c4c5s6 − s4c6)− s2s5s6] + c1 (−s4c5s6 + c4s6) = 0

s2 (c4c5s6 + s4c6) + c2s5s6 = 0

c1 (c2c4s5 + s2c5)− s1s4s5 = 0

s1 (c2c4s5 + s2c5) + c1s4s5 = 1

−s2c4s5 + c2c5 = 0

c1s2d3 − s1d2 + d6 (c1c2c4s5 + c1c5s2 − s1s4s5) = −0.154

s1s2d3 + c1d2 + d6 (c1s4s5 + c2c4s1s5 + c5s1s2) = 0.763

c2d3 + d6 (c2c5 − c4s2s5) = 0

One solution: q = [π/2,  π/2, 0.5,  π/2, 0,  π/2]T 
.

next, we will see how to systematically find such solutions.
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Robot Inverse Kinematics

previous examples show how difficult it would be to obtain a closed-form solution to the 12
equations, instead,

we develop systematic methods based upon the manipulator configuration

For the forward kinematics there is always a unique solution
◮ Potentially complex nonlinear functions

The inverse kinematics may or may not have a solution
◮ Solutions may or may not be unique
◮ Solutions may violate joint limits

Closed-form solutions are ideal !
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Robot Inverse Kinematics
Kinematic Decoupling

Appropriate for systems that have an arm with a wrist
◮ Such that the wrist joint axes are aligned at a point (the last 3 joint axes intersecting at a point)

For such systems, we can decouple (split) the inverse kinematics problem into two parts:
1 Inverse position kinematics: position of the wrist center
2 Inverse orientation kinematics: orientation of the wrist

First, assume 6DOF, the last three intersecting at Oc . For given R and O solve 9 rotational and 3
positional equations:

R0
6 (q0, · · · , qn) = R

O0
6 (q0, · · · , qn) = O

Use the position of the wrist center to determine the first three joint angles.
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Kinematic Decoupling
Spherical wrist as paradigm

Oc is the intersection of the last 3 joint axes (z3, z4, and z5);

origins O4 and O5 will always be at Oc ;

motion of joints 4, 5 and 6 will not change the position of Oc ;

only motions of joints 1, 2 and 3 can influence position of Oc .

link ai αi di θi

4 0 -90 0 θ4
5 0 90 0 θ5
6 0 0 d6 θ6

Mohammed Nour (Assoc. Prof. Dr.Ing.) Robotics 8 / 19



Kinematic Decoupling

Now, origin of tool frame, O6, is a distance d6 translated along z5 (since z5 and z6 are collinear)
◮ Thus, the third column of R is the direction of z6 (w.r.t base frame) and we can write:

O = O0
6 = O0

c + d6R
[

0 0 1
]T

Rearranging: O0
c = O − d6R

[

0 0 1
]T

Recalling:

O =
[

Ox Oy Oz

]T
,

O0
c =

[

xc yc zc
]T

Then:




xc
yc
zc



 =





Ox − d6 r13
Oy − d6 r23
Oz − d6 r33



⇒ θ1, θ2, θ3
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Kinematic Decoupling

Since
[

xc yc zc
]T

are determined from the first three joint angles,
◮ our forward kinematics expression now allows to solve for the first 3 joint angles decoupled from the

final 3.
◮ Thus we now have R0

3

Note that: R = R0
3R

3
6

To solve for the final three joint angles:

R3
6 = (R0

3 )
−1R = (R0

3 )
TR ⇒ θ4, θ5, θ6

Since the last three joints for a spherical wrist, we can use a set of Euler angles to solve for them
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Inverse Position

Now that we have
[

xc yc zc
]T

we need to find θ1, θ2, θ3

Solve for θi by projecting onto the {xi−1, yi−1} plane, solve trig problem

Two examples:
◮ elbow (RRR) and
◮ spherical (RRP) manipulators
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Inverse Position
Example: RRR Manipulator

to solve for θ1, project the arm onto the {x0, y0} plane: θ1 = atan2(yc , xc)
We can also have: θ1 = π + atan2(yc , xc)
This will of course change the solutions for θ2 and θ3
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Inverse Position
Singular Configurations, Offsets

If xc = yc = 0, θ1 is undefined

i.e. any value of θ1 will work

If there is an offset, then we will have two solutions for
θ1: left arm and right arm

However, wrist centers can not intersect z0
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Inverse Position
Left and Right Arm Solutions

Left Arm

θ1 = φ− α

φ = atan2(yc , xc)

α = atan2
(

d ,
√

x2c + y2
c − d2

)

Right Arm

θ1 = α+ β

α = atan2(yc , xc)

β = π + atan2
(

d ,
√

x2c + y2
c − d2

)

= atan2
(

−d ,−
√

x2c + y2
c − d2

)
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Inverse Position
Left and Right Arm Solutions

Therefore there are in general two solutions for θ1

Finding θ2 and θ3 is identical to the planar two-link manipulator we have seen previously:

cos θ3 =
r2 + s2 − L22 − L23

2L2L3

r2 = x2c + y2
c − d2

s = zc − d1

cos θ3 =
x2c + y2

c − d2 + (zc − d1)
2 − L22 − L23

2L2L3
≡ D

Therefore we can find two solutions for θ3
θ3 = atan2

(

D,±
√
1− D2

)

s

r

Z0

θ2

L2

θ3

L3

x , y
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Inverse Position
Left and Right Arm Solutions

The two solutions for θ3 correspond to the elbow-down and elbow-up positions respectively

Now solve for θ2:

θ2 = atan2 (r , s)− atan2 (L2 + L3c3, L3s3)

= atan2
(

√

x2c + y2
c − d2, zc − d1

)

− atan2 (L2 + L3c3, L3s3)

Thus there are two solutions for the pair (θ2, θ3)
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Robot Inverse Kinematics
Inverse position: Example: RRR manipulator

RRR: Four total solutions

In general, there will be a maximum of four solutions to
the inverse position kinematics of an elbow manipulator

The 6R PUMA arm (as an example of the articulated
geometry):
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Inverse Orientation Problem

link ai αi di θi

1 0 90 d1 θ1
2 L2 0 0 θ2
3 L3 0 0 θ3
4 0 -90 0 θ4
5 0 0 0 θ5
6 0 0 d6 θ6

R0
3 =





c1c23 −c1s23 s1
s1c23 −s1s23 −c1
s23 c23 0





R3
6 =





(c4c5c6 − s4s6) (−c4c5s6 − s4c6) c4s5
(s4c5c6 + c4s6) (−s4c5s6 + c4c6) s4s5

−s5c6 s5c6 c5





Equation to solve: R3
6 = (R0

3 )
TR
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Inverse Orientation Problem

Euler angle solutions can be applied. Taking the third column of (R0
3 )

TR

c4s5 = c1c23r13 + s1c23r23 + s23r33

s4s5 = −c1s23r13 − s1s23r23 + c23r33

c5 = s1r13 − c1r23

Again, if θ5 6= 0, we can solve for θ5:

θ5 = atan2

(

s1r13 − c1r23,±
√

1− (s1r13 − c1r23)
2

)

Finally, we can solve for the two remaining angles as follows:

θ4 = atan2 (c1c23r13 + s1c23r23 + s23r33,−c1s23r13 − s1s23r23 + c23r33)

θ6 = atan2 (−s1r11 + c1r21, s1r12 − c1r22)

For the singular configuration (θ5 = 0), we can only find θ4 + θ6 thus it is common to arbitrarily set
θ4 and solve for θ6
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Thanks for your attention.

Questions?
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