

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg <https://mnourgwad.github.io/CSE4316>

Lecture 7: [Robot Inverse Kinematics](#page-0-0)

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons](https://creativecommons.org/licenses/by-nc-sa/4.0/) [Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)

Lecture: 7 [Robot Inverse Kinematics](#page-0-0)

- **•** Inverse Kinematics
	- ► Geometric Approach
	- ► Algebraic Approach

Three representations of manipulator position and orientation:

- **1** actuator space
- ² joint space
- **3** Cartesian space

- In Forward kinematics we converted from Joint space to Cartesian Space
- To reach a specific point in 3D space we need to get the required joint angles

Two Approaches

Geometric Approach

- we try to decompose the spatial geometry of the arm into several plane-geometry problems.
- For many manipulators (particularly when $\alpha=0^{\circ}$ or $\pm 90^{\circ})$ this can be done quite easily.

Algebraic Approach

- We use link parameters to find the kinematic equations.
- the resulting transformation matrix is equated to goal specifications, and further manipulated to get the joint angles.

Simple Example

Example

For this simple RP robot, find its inverse kinematics (i.e. find θ_1 , S as a function of X and Y)

Finding S $S = \sqrt{x^2 + y^2}$ Finding θ_1 θ_1 = arctan $(\frac{y}{x})$

More Specifically

$$
\theta_1 = \arctan 2(\tfrac{y}{x})
$$

$$
arctan2(y,x) = \begin{cases} \arctan(y/x), & x > 0 & y \\ \arctan(y/x) + \pi, & x < 0, y \ge 0 \\ \arctan(y/x) - \pi, & x < 0, y < 0 \\ +\pi, & x = 0, y > 0 \\ -\pi, & x = 0, y < 0 \\ \text{undified}, & x = 0, y = 0 \end{cases}
$$

Example

For this RR robot, find its inverse kinematics (i.e.given: x, y and L_1, L_2 ; find: θ_1, θ_2)

Existence of solutions

- For a solution to exist, the specified goal point must lie within the workspace.
- no configuration *singularity*

Redundancy:

no unique solution exists but we have multiple solutions.

Notice that for this manipulator:

- two solutions are possible.
- Sometimes no solution is possible.

Geometric Solution

Using the Law of Sines:

$$
\frac{\sin B}{b} = \frac{\sin C}{c}
$$

$$
\frac{\sin \bar{\theta}_1}{L_2} = \frac{\sin(180 - \theta_2)}{\sqrt{x^2 + y^2}} = \frac{\sin(\theta_2)}{\sqrt{x^2 + y^2}}
$$

$$
\theta_1 = \alpha - \bar{\theta}_1, \quad \alpha = \arctan 2(\frac{y}{x})
$$

Using the Law of Cosines:

$$
c^{2} = a^{2} + b^{2} - 2ab \cos C
$$

$$
(x^{2} + y^{2}) = L_{1}^{2} + L_{2}^{2} - 2L_{1}L_{2} \cos(180 - \theta_{2})
$$

$$
\cos(180 - \theta_{2}) = -\cos(\theta_{2})
$$

$$
\cos(\theta_{2}) = \frac{x^{2} + y^{2} - L_{1}^{2} - L_{2}^{2}}{2L_{1}L_{2}}
$$

Geometric Solution

$$
\theta_2 = \arccos\left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}\right)
$$

Redundant since θ_2 could be in the 1st or 4th quadrant.

$$
\theta_1 = \arctan 2\left(\frac{y}{x}\right) - \arcsin\left(\frac{L_2 \sin(\theta_2)}{\sqrt{x^2 + y^2}}\right)
$$

Redundancy, since θ_2 has two possible values

Algebraic Solution

We can see that:

 $x = L_1 c_1 + L_2 c_{1+2}$ (1) $y = L_1s_1 + L_2s_{1+2}$ (2)

squaring and summing 1 and 2 , we get:

$$
x^{2} + y^{2} = L_{1}^{2}c_{1}^{2} + L_{2}^{2}c_{1+2}^{2} + 2L_{1}L_{2}c_{1}c_{1+2}
$$

+ $L_{1}^{2}s_{1}^{2} + L_{2}^{2}s_{1+2}^{2} + 2L_{1}L_{2}s_{1}s_{1+2}$
= $L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}[c_{1}c_{1+2} + s_{1}s_{1+2}]$
= $L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}C_{2}$

here C_2 is the only unknown

Remember

 $cos(a \pm b) = cos(a) cos(b) \mp sin(a) sin(b)$ $sin(a \pm b) = sin(a) cos(b) \pm cos(a) sin(b)$

Algebraic Solution

We finally get:

$$
\theta_2 = \arccos\left(\frac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}\right)
$$

Rearranging 1 and 2, we get:

$$
x = L_1 c_1 + L_2 c_{1+2}
$$

= L_1 c_1 + L_2 c_1 C_2 - L_2 s_1 s_2
= c_1 (L_1 + L_2 C_2) - s_1 (L_2 s_2) (3)

following the same procedure with 2:

$$
y = c_1(L_2s_2) + s_1(L_1 + L_2C_2)
$$
 (4)

 θ_2 is known so we can solve for θ_1 .

Algebraic Solution

In equations 3 and 4, we have 2 equations and 2 unknowns (s_1) and c_1). They can be rearranged as:

$$
\left[\begin{array}{c} x \\ y \end{array}\right] = \left[\begin{array}{cc} (L_1 + L_2C_2) & -(L_2s_2) \\ (L_2s_2) & (L_1 + L_2C_2) \end{array}\right] \left[\begin{array}{c} c_1 \\ s_1 \end{array}\right]
$$

Utilizing the law of cosines to replace with $x^2 + y^2$ then substituting for c_1 and simplifying many times, we get:

$$
s_1 = \frac{y(L_1 + L_2C_2) - xL_2s_2}{x^2 + y^2}
$$

$$
\theta_1 = \arcsin\left(\frac{y(L_1 + L_2C_2) - xL_2s_2}{x^2 + y^2}\right)
$$

Algebraic Solution

Algebraic Solution

Find the values of joint parameters that will put the tool frame at a desired position and orientation (within the workspace)

• Given the transformation matrix:
$$
H = \begin{bmatrix} R_{3\times 3} & T_{3\times 1} \\ 0 & 1 \end{bmatrix}
$$
, $R \in SO(3)$

- Find all solutions to: $T_n^0(q_1,\dots,q_n) = H$
- Noting that: $T_n^0(q_1,\cdots,q_n)=A_1(q_1)\cdots A_n(q_n)$
- This gives 12 (nontrivial) equations with n unknowns
- with end effector position at $T_{3\times 1}$
- and its orientation is obtained as:

$$
\psi=\text{atan2}\left(\frac{R_{21}}{R_{11}}\right),\quad \theta=\text{atan2}\left(-\frac{R_{31}\sin(\psi)}{R_{21}}\right),\quad \phi=\text{atan2}\left(\frac{R_{32}}{R_{33}}\right).
$$

Example: the Stanford manipulator

DH Parameters:

From which we get the transformation matrix (in general form):

$$
H_6^0 = \left[\begin{array}{cccc} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{array}\right] = [r_{ij}], \begin{array}{l} i = 1, \cdots, 4, \\ j = 1, \cdots, 4, \\ j = 1, \cdots, 4 \end{array}
$$

• We have 12 non-trivial equations:

$$
c_{1}[c_{2}(c_{4}c_{5}c_{6}-s_{4}s_{6})-s_{2}s_{5}c_{6}]-d_{2}(s_{4}c_{5}c_{6}+c_{4}s_{6})=0s_{1}[c_{2}(c_{4}c_{5}c_{6}-s_{4}s_{6})-s_{2}s_{5}c_{6}]+c_{1}(s_{4}c_{5}c_{6}+c_{4}s_{6})=0-s_{2}(c_{4}c_{5}c_{6}-s_{4}s_{6})-c_{2}s_{5}c_{6}=1c_{1}[-c_{2}(c_{4}c_{5}s_{6}+s_{4}c_{6})+s_{2}s_{5}s_{6}]-s_{1}(-s_{4}c_{5}s_{6}+c_{4}c_{6})=1-s_{1}[-c_{2}(c_{4}c_{5}s_{6}-s_{4}c_{6})-s_{2}s_{5}s_{6}]+c_{1}(-s_{4}c_{5}s_{6}+c_{4}s_{6})=0s_{2}(c_{4}c_{5}s_{6}+s_{4}c_{6})+c_{2}s_{5}s_{6}=0c_{1}(c_{2}c_{4}s_{5}+s_{2}c_{5})-s_{1}s_{4}s_{5}=0s_{1}(c_{2}c_{4}s_{5}+s_{2}c_{5})+c_{1}s_{4}s_{5}=1-s_{2}c_{4}s_{5}+c_{2}c_{5}=0c_{1}s_{2}d_{3}-s_{1}d_{2}+d_{6}(c_{1}c_{2}c_{4}s_{5}+c_{1}c_{5}s_{2}-s_{1}s_{4}s_{5})=-0.154s_{1}s_{2}d_{3}+c_{1}d_{2}+d_{6}(c_{1}s_{4}s_{5}+c_{2}c_{4}s_{1}s_{5}+c_{5}s_{1}s_{2})=0.763c_{2}d_{3}+d_{6}(c_{2}c_{5}-c_{4}s_{2}s_{5})=0
$$

• For a given:

$$
H_6^0=\left[\begin{array}{cccc} 0&1&0&-0.154\\0&0&1&0.763\\1&0&0&0\\0&0&0&1\end{array}\right]
$$

• Find
$$
\mathbf{q} = [\theta_1, \theta_2, d3, \theta_4, \theta_5, \theta_6]^T
$$
.

One solution: $\mathbf{q} = [\pi/2, \pi/2, 0.5, \pi/2, 0, \pi/2]^T$.

• next lecture, we will see how to systematically find such solutions.

Thanks for your attention. Questions?

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)