

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg https://mnourgwad.github.io/CSE4316

Lecture 7: Robot Inverse Kinematics

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 7 Robot Inverse Kinematics

- Inverse Kinematics
 - Geometric Approach
 - Algebraic Approach

Three representations of manipulator position and orientation:

- actuator space
- ioint space
- Oartesian space

- In Forward kinematics we converted from Joint space to Cartesian Space
- To reach a specific point in 3D space we need to get the required joint angles

Two Approaches

Geometric Approach

- we try to decompose the spatial geometry of the arm into several plane-geometry problems.
- For many manipulators (particularly when $\alpha = 0^{\circ}$ or $\pm 90^{\circ}$) this can be done quite easily.

Algebraic Approach

- We use link parameters to find the kinematic equations.
- the resulting transformation matrix is equated to goal specifications, and further manipulated to get the joint angles.

Simple Example

Example

For this simple RP robot, find its inverse kinematics (i.e. find θ_1 , S as a function of X and Y)

Finding S $S = \sqrt{x^2 + y^2}$ Finding θ_1 $\theta_1 = \arctan\left(\frac{y}{x}\right)$

More Specifically

$$\theta_1 = \arctan 2(\frac{y}{x})$$

$$arctan2(y,x) = \begin{cases} arctan(y/x), & x > 0 \\ arctan(y/x) + \pi, & x < 0, & y \ge 0 \\ arctan(y/x) - \pi, & x < 0, & y < 0 \\ +\pi, & x = 0, & y > 0 \\ -\pi, & x = 0, & y < 0 \\ undifined, & x = 0, & y = 0 \end{cases} \xrightarrow{y} x$$

Example

For this RR robot, find its inverse kinematics (i.e.given: x, y and L_1, L_2 ; find: θ_1, θ_2)

Existence of solutions

- For a solution to exist, the specified goal point must lie within the workspace.
- no configuration *singularity*

Redundancy:

no unique solution exists but we have multiple solutions.

Notice that for this manipulator:

- two solutions are possible.
- Sometimes no solution is possible.

Geometric Solution

Using the Law of Sines:

$$\frac{\sin B}{b} = \frac{\sin C}{c}$$
$$\frac{\sin \bar{\theta}_1}{L_2} = \frac{\sin(180 - \theta_2)}{\sqrt{x^2 + y^2}} = \frac{\sin(\theta_2)}{\sqrt{x^2 + y^2}}$$
$$\theta_1 = \alpha - \bar{\theta}_1, \quad \alpha = \arctan 2(\frac{y}{x})$$

Using the Law of Cosines:

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

$$(x^{2} + y^{2}) = L_{1}^{2} + L_{2}^{2} - 2L_{1}L_{2}\cos(180 - \theta_{2})$$

$$\cos(180 - \theta_{2}) = -\cos(\theta_{2})$$

$$\cos(\theta_{2}) = \frac{x^{2} + y^{2} - L_{1}^{2} - L_{2}^{2}}{2L_{1}L_{2}}$$

Geometric Solution

$$heta_2 = \arccos\left(rac{x^2 + y^2 - L_1^2 - L_2^2}{2L_1L_2}
ight)$$

Redundant since θ_2 could be in the 1st or 4th quadrant.

$$heta_1 = \arctan 2\left(rac{y}{x}
ight) - \arcsin\left(rac{L_2\sin(heta_2)}{\sqrt{x^2+y^2}}
ight)$$

Redundancy, since θ_2 has two possible values

Algebraic Solution

We can see that:

 $\begin{aligned} x &= L_1 c_1 + L_2 c_{1+2} \\ y &= L_1 s_1 + L_2 s_{1+2} \end{aligned} \tag{1}$

squaring and summing 1 and 2, we get:

$$\begin{aligned} x^{2} + y^{2} &= L_{1}^{2}c_{1}^{2} + L_{2}^{2}c_{1+2}^{2} + 2L_{1}L_{2}c_{1}c_{1+2} \\ &+ L_{1}^{2}s_{1}^{2} + L_{2}^{2}s_{1+2}^{2} + 2L_{1}L_{2}s_{1}s_{1+2} \\ &= L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}\left[c_{1}c_{1+2} + s_{1}s_{1+2}\right] \\ &= L_{1}^{2} + L_{2}^{2} + 2L_{1}L_{2}C_{2} \end{aligned}$$

here C_2 is the only unknown

Remember

 $cos(a \pm b) = cos(a) cos(b) \mp sin(a) sin(b)$ $sin(a \pm b) = sin(a) cos(b) \pm cos(a) sin(b)$

Algebraic Solution

We finally get:

$$heta_2=rccos\left(rac{x^2+y^2-L_1^2-L_2^2}{2L_1L_2}
ight)$$

Rearranging 1 and 2, we get:

$$x = L_1 c_1 + L_2 c_{1+2}$$

= $L_1 c_1 + L_2 c_1 C_2 - L_2 s_1 s_2$
= $c_1 (L_1 + L_2 C_2) - s_1 (L_2 s_2)$ (3)

following the same procedure with 2:

$$y = c_1(L_2s_2) + s_1(L_1 + L_2C_2)$$

 θ_2 is known so we can solve for θ_1 .

(4)

Algebraic Solution

In equations 3 and 4, we have 2 equations and 2 unknowns (s_1 and c_1). They can be rearranged as:

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} (L_1 + L_2C_2) & -(L_2s_2) \\ (L_2s_2) & (L_1 + L_2C_2) \end{bmatrix} \begin{bmatrix} c_1 \\ s_1 \end{bmatrix}$$

Utilizing the law of cosines to replace with $x^2 + y^2$ then substituting for c_1 and simplifying many times, we get:

$$s_1 = \frac{y(L_1 + L_2C_2) - xL_2s_2}{x^2 + y^2}$$

$$\theta_1 = \arcsin\left(\frac{y(L_1 + L_2C_2) - xL_2s_2}{x^2 + y^2}\right)$$

Algebraic Solution

Algebraic Solution

Find the values of joint parameters that will put the tool frame at a desired position and orientation (within the workspace)

• Given the transformation matrix:
$$H = \left[egin{array}{cc} R_{3 imes3} & T_{3 imes1} \\ 0 & 1 \end{array}
ight], R \in SO(3)$$

- Find **all** solutions to: $T_n^0(q_1, \cdots, q_n) = H$
- Noting that: $T^0_n(q_1,\cdots,q_n)=A_1(q_1)\cdots A_n(q_n)$
- This gives 12 (nontrivial) equations with n unknowns
- \bullet with end effector position at $\mathcal{T}_{3\times 1}$
- and its orientation is obtained as:

$$\psi = \operatorname{atan2}\left(\frac{R_{21}}{R_{11}}\right), \quad \theta = \operatorname{atan2}\left(-\frac{R_{31}\sin(\psi)}{R_{21}}\right), \quad \phi = \operatorname{atan2}\left(\frac{R_{32}}{R_{33}}\right).$$

Example: the Stanford manipulator

link	ai	α_i	di	θ_i
1	0	-90	0	θ_1
2	0	90	d_2	θ_2
3	0	0	<i>d</i> ₃	0
4	0	-90	0	θ_4
5	0	90	0	θ_5
6	0	0	d_6	θ_6

DH Parameters:

From which we get the transformation matrix (in general form):

$$H_6^0 = \begin{bmatrix} r_{11} & r_{12} & r_{13} & d_x \\ r_{21} & r_{22} & r_{23} & d_y \\ r_{31} & r_{32} & r_{33} & d_z \\ 0 & 0 & 0 & 1 \end{bmatrix} = [r_{ij}], \ \substack{i = 1, \cdots, 4 \\ j = 1, \cdots, 4}$$

• We have 12 non-trivial equations:

$$\begin{aligned} c_1 \left[c_2 \left(c_4 c_5 c_6 - s_4 s_6 \right) - s_2 s_5 c_6 \right] - d_2 \left(s_4 c_5 c_6 + c_4 s_6 \right) = 0 \\ s_1 \left[c_2 \left(c_4 c_5 c_6 - s_4 s_6 \right) - s_2 s_5 c_6 \right] + c_1 \left(s_4 c_5 c_6 + c_4 s_6 \right) = 0 \\ - s_2 \left(c_4 c_5 c_6 - s_4 s_6 \right) - c_2 s_5 c_6 = 1 \\ c_1 \left[- c_2 \left(c_4 c_5 s_6 + s_4 c_6 \right) + s_2 s_5 s_6 \right] - s_1 \left(- s_4 c_5 s_6 + c_4 c_6 \right) = 1 \\ - s_1 \left[- c_2 \left(c_4 c_5 s_6 - s_4 c_6 \right) - s_2 s_5 s_6 \right] + c_1 \left(- s_4 c_5 s_6 + c_4 s_6 \right) = 0 \\ s_2 \left(c_4 c_5 s_6 + s_4 c_6 \right) + c_2 s_5 s_6 = 0 \\ c_1 \left(c_2 c_4 s_5 + s_2 c_5 \right) - s_1 s_4 s_5 = 0 \\ s_1 \left(c_2 c_4 s_5 + s_2 c_5 \right) - s_1 s_4 s_5 = 1 \\ - s_2 c_4 s_5 + c_2 c_5 = 0 \\ c_1 s_2 d_3 - s_1 d_2 + d_6 \left(c_1 c_2 c_4 s_5 + c_1 c_5 s_2 - s_1 s_4 s_5 \right) = -0.154 \\ s_1 s_2 d_3 + c_1 d_2 + d_6 \left(c_1 s_4 s_5 + c_2 c_4 s_1 s_5 + c_5 s_1 s_2 \right) = 0.763 \\ c_2 d_3 + d_6 \left(c_2 c_5 - c_4 s_2 s_5 \right) = 0 \end{aligned}$$

$$H_6^0 = \left[\begin{array}{rrrr} 0 & 1 & 0 & -0.154 \\ 0 & 0 & 1 & 0.763 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]$$

• Find
$$\mathbf{q} = [\theta_1, \theta_2, d3, \theta_4, \theta_5, \theta_6]^T$$
.

• One solution: $\mathbf{q} = [\pi/2, \pi/2, 0.5, \pi/2, 0, \pi/2]^T$.

• next lecture, we will see how to systematically find such solutions.

Thanks for your attention. Questions?

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io/CSE4316

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.