

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg <https://mnourgwad.github.io/CSE4316>

Lecture 6: [Forward Kinematics](#page-0-0)

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons](https://creativecommons.org/licenses/by-nc-sa/4.0/) [Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 6 [Forward Kinematics](#page-0-0)

- **Forward Kinematics**
- **•** Algebraic Approach
- Denavit–Hartenberg (DH) Convention

Forward Kinematics

- You have a robotic arm that starts out aligned with the x_0 -axis.
- for a specific values of joint space $\mathbf{q}=\left[q_1, q_2, \cdots, q_n\right]^T$
- The Quest: What is the position of the robot arm tip?

To find the robot forward kinematics:

4 Geometric Approach

- \blacktriangleright suitable for the simple situations.
- \triangleright For robots with more links and whose arm extends into 3D, the geometry gets much more tedious.

2 Algebraic Approach

 \blacktriangleright Involves coordinate transformations.

Forward Kinematics

Example

For the 3R arm, link lengths are L_1, L_2, L_3 . For specific $\mathbf{q} = \left[\theta_1, \theta_2, \theta_3\right]^T$, get its tooltip position (the green dot in the X_0Y_0 frame).

Geometric Approach

- \blacktriangleright just extend the results we already obtained with the 2R arm.
- Algebraic Approach
	- \blacktriangleright this approach we will learn next

Forward Kinematics

Algebraic Approach

- we start by frame assignment following a **convention**
- we can get the position of the tooltip by:
	- rotating by θ_1 will put you in frame $\{1\}$.
	- Translate along the X_1 axis by L_1 .
	- Rotating by θ_2 will reach frame $\{2\}$.
	- \triangleright and so on until we are in frame $\{3\}$.

$$
H = R_z(\theta_1) * T_{x1}(L_1) * R_z(\theta_2) * T_{x2}(L_2) * R_z(\theta_3)
$$

- tooltip position relative to frame $\{3\}$ is $(L_3, 0)$.
	- \triangleright Multiplying H by that position vector will give the tooltip coordinates relative to frame {0}.

Algebraic Approach

- We will develop a set of **conventions** that provide a **systematic procedure** for performing this analysis.
- It is possible to carry out forward kinematics analysis even without respecting these conventions,
	- \triangleright as we did for the two-link planar manipulator example.
- \bullet However, the kinematic analysis of an *n*–link manipulator can be extremely **complex**
- **•** the conventions introduced **simplify** the analysis considerably.
	- \triangleright they give rise to a universal language with which robot engineers can communicate.
- A commonly used **convention for selecting frames** of reference in robotic applications is the Denavit–Hartenberg (DH)

Denavit-Hartenberg (DH) Notation

• Each joint is assigned a coordinate frame. Using DH convention,

 \bullet In this convention, each homogeneous transformation A_i is represented as a product of four basic transformations

$$
A_i = Rot_z(\theta_i) \text{Trans}_z(d_i) \text{Trans}_x(a_i) Rot_x(\alpha_i)
$$

- the four quantities θ_i , a_i , d_i , α_i are parameters associated with link i and joint i
- They are called: link length, link twist, link offset, and joint angle, respectively

Peter Corke, Robotics, Vision and Control, Springer-Verlag, 2011

DH Coordinate Frame Assumptions

- The axis x_i is perpendicular to the axis z_{i-1} .
- The axis x_i intersects the axis z_{i-1} .

DH Convention can NOT be applied if these assumptions are not fulfilled

Peter Corke, Robotics, Vision and Control, Springer-Verlag, 2011

Summary of DH Convention Procedure

- Step 1: Locate and label the joint axes z_0, \dots, z_{n-1} .
	- ightharpoonup zi to be the axis of actuation for joint $i + 1$
	- \triangleright z0 is the axis of actuation for joint 1, z1 is the axis of actuation for joint 2, for revolute joint, z_i is axis of revolution, for prismatic joint, z_i is its translation axis.
- **Step 2**: Establish the base frame. Set the origin anywhere on the z_0 -axis. The x_0 and y_0 axes are chosen conveniently to form a right–handed frame.

For $i = 1, \dots, n-1$, perform Steps 3 to 5.

- **Step 3:** Locate the origin O_i where the common normal to z_i and z_{i-1} intersects z_i .
	- If z_i intersects z_{i-1} locate O_i at this intersection.
	- If z_i and z_{i-1} are parallel, locate O_i in any convenient position along z_i .
- **Step 4:** Establish x_i along the common normal between z_{i-1} and z_i through O_i , or in the direction normal to the $z_{i-1} - z_i$ plane if they intersect.
- Step 5: Establish y_i to complete a right–handed frame.

Summary of DH Convention Procedure

• Step 6: Create a table of link parameters:

Summary of DH Convention Procedure

 \bullet Step 8: Form the homogeneous transformation matrices A_i by substituting the above parameters into A_i matrices:

$$
A_i = \left[\begin{array}{ccc} \cos\theta_i & -\cos\alpha_i\sin\theta_i & \sin\alpha_i\sin\theta_i & a_i\cos\theta_i \\ \sin\theta_i & \cos\alpha_i\cos\theta_i & -\sin\alpha_i\cos\theta_i & a_i\sin\theta_i \\ 0 & \sin\alpha_i & \cos\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{array}\right]
$$

Step 9: Form the transformation matrix $T_n^0 = A_1 \cdots A_n$

This then gives the position and orientation of the tool frame expressed in base coordinates.

DH Convention Examples

Planar Elbow Manipulator

link aⁱ αⁱ dⁱ θⁱ ∗ 1 a¹ 0 0 θ 1 ∗ 2 a² 0 0 θ 2 x = a¹ c¹ + a² c¹² y = a¹ s¹ + a² s¹²

DH Convention Examples

Three–Link Cylindrical Robot

link	a_i	α_i	d_i	θ_i
1	0	0	d_1^*	θ_1^*
2	0	-90	d_2^*	0
3	0	0	d_2^*	0
3	0	0	d_2^*	0
4	a_i	c_1	0	0
0	0	1	d_1	
0	0	0	1	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	1	0	
0	0	0	1	

\n $T_3^0 = A_1 A_2 A_3 =$ \n

$\begin{bmatrix}\n c_1 & 0 & -s_1 & -s_1 d_3 \\ 0 & 0 & 0 & 1 \\ 0 & -1 & 0 & d_1 + d_2 \\ 0 & 0 & 0 & 1\n \end{bmatrix}$

DH Convention Examples

Spherical Wrist

$$
\left[\begin{array}{cccc} c_4 & 0 & -s_4 & 0 \\ s_4 & 0 & c_4 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ c_6 & -s_6 & 0 & 0 \\ 0 & 0 & 0 & 1 & d_6 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right] \quad A_5 = \left[\begin{array}{cccc} c_5 & 0 & s_5 & 0 \\ s_5 & 0 & -c_5 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]
$$

\n
$$
s_6 & c_6 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ a c_5 c_6 - s_4 s_6 & -c_4 c_5 s_6 - s_4 c_6 & c_4 s_5 & c_4 s_5 d_6 \\ a c_5 c_6 + c_4 s_6 & -s_4 c_5 s_6 + c_4 c_6 & s_4 s_5 & s_4 s_5 d_6 \\ -s_5 c_6 & s_5 s_6 & c_5 & c_5 d_6 \\ 0 & 0 & 0 & 1 \end{array} \right]
$$

 $A_4=$

 $A_6 =$

 $T_6^3 =$

Thanks for your attention. Questions?

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)