

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg https://mnourgwad.github.io/CSE4316

Lecture 4: Robot Kinematics (cont.)

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 4 Robot Kinematics (cont.)

- Robot Workspace, Reference Frames.
- Robot Kinematics
- Frames, Points and Vectors
- Basic Transformations
 - Translation along X–Axis
 - Translation along XY–Axis

The Workspace of the manipulator is the total volume swept out by the end effector as the manipulator executes all possible motions.

Workspace is constrained by:

- Geometry of the manipulator.
- Mechanical constraint of the joints (a revolute joint may be limited to less than 360 degrees)
- Reachable Workspace: the entire set of points reachable by the manipulator.
- **Dextrous** Workspace: consists of those points that the manipulator can reach with an arbitrary orientation of the end effectors.
 - Dextrous Workspace is a subset of Reachable Workspace.

Workspace

Robot Characteristics and Performance Measure

- Payload: the max load a robot can handle
- Reach: The maximum distance a robot can reach within its work envelope.
- Precision (Accuracy, validity): how accurately a specified point can be reached.
- **Repeatability** (variability): how accurately the same position can be reached if the motion is repeated many times.

Robot Characteristics and Performance Measure

• The work envelope of the robot, as viewed from the side.

 $\bullet\,$ payload at the wrist is 30 kg and repeatability is ± 0.15 mm.

Reference Frames

Frames with Standard Names

Most robots may be programmed to move relative to either of these reference frames.

Reference Frames

Frames with Standard Names

World Reference Frame

A universal coordinate frame, as defined by the x - y - z axes. In this case the joints of the robot move simultaneously so as to create motions along the three major axes.

Joint Reference Frame

used to specify movements of each individual joint of the Robot. In this case each joint may be accessed individually and thus only one joint moves at a time.

Tool Reference Frame

specifies the movements of the robot tool-tip relative to the frame attached to the hand. All joints of the robot move simultaneously to create coordinated motions about the Tool frame.

Kinematics

The branch of classical mechanics that describes the motion of objects without consideration of the forces that cause it

- The study of movement
- Why do you need it?
 - Determine endpoint position and/or joint positions
 - ► Calculate mechanism velocities, accelerations, etc.
 - Calculate force-torque
- Allows you to move between Joint Space and Cartesian Space

- Forward kinematics: determines where the robot hand is (all joint variables are known)
 - ▶ you are given: length of each link, angle of each joint.
 - ▶ you find: position of any point (i.e. its (x, y, z) coordinates)

- **Inverse Kinematics**: to calculate what each joint variable is (If we desire that the hand be located at a particular point)
 - ▶ you are given: length of each link, position of some point on the robot
 - ▶ you find: The angles of each joint needed to obtain that position

Joint Variables

- In forward kinematics we convert from Joint space to Cartesian Space
- To reach a specific point in 3D space we need to get the required joint angles

• Absolute (Sometimes)

 $x = L_1 \cos(\theta_1) + L_2 \cos(\theta_2)$ $y = L_1 \sin(\theta_1) + L_2 \sin(\theta_2)$

• Relative (usually) $\begin{aligned} x &= L_1 \cos(\theta_1) + L_2 \cos(\theta_1 + \theta_2) \\ y &= L_1 \sin(\theta_1) + L_2 \sin(\theta_1 + \theta_2) \end{aligned}$

Frames, Points and Vectors

A **point** corresponds a particular location in the space.

A vector is defined by direction and magnitude.

3 coordinates relative to a reference frame:

$$P = a_x \hat{i} + b_y \hat{j} + c_z \hat{k}$$

3 coordinates of its tail and of its head:

$$\vec{P} = a_x \hat{i} + b_y \hat{j} + c_z \hat{k}$$

A coordinate frame in \mathbf{R}^2 :

- the point $P = [x_0^p, y_0^p]^T$ can be associated with the vector \vec{V}_1 .
- Here x_0^p denotes x-coordinate of point P in $\{x_0, o_0, y_0\}$ -frame (i.e. in the 0-frame).

Two coordinate frames in \mathbf{R}^2 :

- the point $P = [x_0^{\rho}, y_0^{\rho}]^T = [x_1^{\rho}, y_1^{\rho}]^T$ can be associated with vectors $\vec{\mathbf{V}}_1$ and $\vec{\mathbf{V}}_2$.
- Here x_1^p denotes x-coordinate of point P in $\{x_1, o_1, y_1\}$ -frame (i.e. in the 1-frame).

- The coordinates of the vector $\vec{\mathbf{V}}_1$ in the 0-frame $[x_0^p, y_0^p]^T$
- What would be coordinates of $\vec{\bm{V}}_1$ in the 1-frame?

- We need to consider the vector V₁¹ of the same direction and magnitude as V₁⁰ but with the origin in o1.
- Conclusion: we can sum vectors only if they are expressed in parallel frames.

Translation along X-Axis

 p_x = distance between the XY and NO coordinate frames

$$v^{XY} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}, \quad v^{NO} = \begin{bmatrix} v_N \\ v_O \end{bmatrix}, \quad P = \begin{bmatrix} p_x \\ 0 \end{bmatrix}$$

Translation along X-Axis

Writing v^{XY} in terms of v^{NO}

$$v^{XY} = \begin{bmatrix} p_x + v_n \\ v_o \end{bmatrix} = P + v^{NO}$$

Translation along XY-Axis

Robotics

2D Rotation

• Representing one coordinate frame in terms of another:

$$R_1^0 = \begin{bmatrix} x_1^0 & y_1^0 \end{bmatrix}$$

• unit vectors are defined as:

$$\begin{aligned} x_1^0 &= |\vec{x_0}| = \begin{bmatrix} \cos\theta\\ \sin\theta \end{bmatrix}, \quad y_1^0 &= |\vec{y_0}| = \begin{bmatrix} -\sin\theta\\ \cos\theta \end{bmatrix}\\ R_1^0 &= \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix} \end{aligned}$$

• This is called a rotation matrix

Rotation matrices as projections

• Projecting the axes of O_1 onto the axes of frame O_0 :

$$\begin{aligned} x_{1}^{0} &= \begin{bmatrix} (\vec{x_{1}} \cdot \vec{x_{0}}) \\ (\vec{x_{1}} \cdot \vec{y_{0}}) \end{bmatrix}, \quad y_{1}^{0} &= \begin{bmatrix} (\vec{y_{1}} \cdot \vec{x_{0}}) \\ (\vec{y_{1}} \cdot \vec{y_{0}}) \end{bmatrix} \\ R_{1}^{0} &= \begin{bmatrix} x_{1}^{0}(\theta) | y_{1}^{0}(\theta) \end{bmatrix} = \begin{bmatrix} (\vec{x_{1}} \cdot \vec{x_{0}}) & (\vec{y_{1}} \cdot \vec{x_{0}}) \\ (\vec{x_{1}} \cdot \vec{y_{0}}) & (\vec{y_{1}} \cdot \vec{y_{0}}) \end{bmatrix} \\ &= \begin{bmatrix} |\vec{x_{1}}| | \vec{x_{0}}| \cos \theta & | \vec{y_{1}}| | \vec{y_{0}}| \cos (\theta + \frac{\pi}{2}) \\ |\vec{x_{1}}| | \vec{x_{0}}| \cos (\theta - \frac{\pi}{2}) & | \vec{y_{1}}| | \vec{y_{0}}| \cos \theta \end{bmatrix} \\ &= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \end{aligned}$$

$${}^{0}\vec{a}\cdot\vec{b} = a_{1} b_{1} + a_{2} b_{2} + a_{3} b_{3} = |\vec{a}| |\vec{b}| \cos\left(\widehat{\vec{a},\vec{b}}\right)$$

$${}^{0}\sin(\theta) = -\sin(-\theta) = -\cos(\theta + 90^{\circ}) = \cos(\theta - 90^{\circ}), \quad \cos(\theta) = \cos(\pm\theta) = \sin(\theta + 90^{\circ}) = -\sin(\theta - 90^{\circ})$$

$$Matrix (Arrow (Arrow (Bright (Delta))))$$

Mohammed Nour (Assoc. Prof. Dr.Ing.)

Properties of rotation matrices

Rotation matrix has a number of interesting properties:

• Inverse Rotations:

$$\left(R_1^0\right)^{-1} = \begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}^{-1} = \frac{1}{\det\left(R_1^0\right)} \begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} = \left(R_1^0\right)^T$$

• using odd/even properties (another interpretation)

$$R_{0}^{1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = (R_{1}^{0})^{T}$$

$${}^{0}\mathrm{sin}(\theta) = -\sin(-\theta) = -\cos(\theta + 90^{\circ}) = \cos(\theta - 90^{\circ}), \quad \cos(\theta) = \cos(\pm\theta) = \sin(\theta + 90^{\circ}) = -\sin(\theta - 90^{\circ})$$

Properties of rotation matrices

- Columns (rows) of R are mutually orthogonal
- Each column (row) of R is a unit vector
- The determinant of a rotation matrix is always ± 1
 - +1 if we only use **right-hand convention**

$$det(R) = \begin{vmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{vmatrix} = \cos^2(\theta) + \sin^2(\theta) = 1$$

• The set of all $n \times n$ matrices (X) that satisfies these properties are called the **Special Orthogonal Group** of order n

$$\begin{aligned} X^{-1} &= X^{T} \Rightarrow XX^{T} = \mathbf{I}_{n}, \quad det(XX^{T}) = 1 = det(X)det(X^{T}) = det(X)^{2} \\ X \in \mathcal{O}(n). \text{ If } detX = 1 \Rightarrow X \in \mathcal{SO}(n) \end{aligned}$$

$$^{0}\cos^{2}(\theta) + \sin^{2}(\theta) = 1$$

Rotation around the Z-Axis

 $\theta = \mathsf{Angle}$ of rotation between the XY and NO frames

$$v^{XY} = \begin{bmatrix} v_x \\ v_y \end{bmatrix}, \quad v^{NO} = \begin{bmatrix} v_N \\ v_O \end{bmatrix}$$
$$v^{XY} = \begin{bmatrix} v_x \\ v_y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} v_N \\ v_O \end{bmatrix}$$
$$v^{XY} = R^{XY}_{NO} v^{NO}$$

0

Rotation Around Major Axes

• Rotation around the Z-Axis

$$R_{z,\theta} = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

• Rotation around the Y-Axis

$$R_{y,\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

• Rotation around the X-Axis

$$R_{\mathbf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

Frame Transformation

Translation Followed by Rotation

• Translation along P followed by rotation by θ around Z-axis

- p_x, p_y are relative to the original coordinate frame.
- Translation followed by rotation is different than rotation followed by translation.
- knowing the coordinates of a point (V_N, V_O) in some coordinate frame $\{NO\}$ you can find the position of that point relative to another coordinate frame $\{X_0, Y_0\}$.

Thanks for your attention. Questions?

Assoc. Prof. Dr.Ing. Mohammed Nour mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io/CSE4316

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.