Zagazig University, Faculty of Engineering Academic year: 2015-2016 Specialization: Computer and Systems Course Name: Selective Course (5) Course Code : CSE4316 Examiners: Dr.\ Mohammed Nour

Date: 9/1/2016 Exam Time: 45 Min. No. of pages: 6 No. of Questions: 5 Full Mark: 80

- **a)** Write your solutions in the space provided. If you need more space, write on the back of the sheet containing the questions.
- b) The exam is in 6 pages. Page 6 contains supplementary material that may be needed.
- c) Please show all work. Intermediate steps must be legible to receive credit.

No.

الاسم:

Problem 1

[12 Marks]

For each of the following statements:

- (a) Check (\checkmark) for true or (\checkmark) for the false.
- (b) Give short comment for the correct one and correct the false one.

1. An example of the robot anthropomorphic characteristics is its kinematics.					
example of the robot anthropomorphic characteristics: mechanical arm,					
sensors to respond to input, Intelligence to make decisions.					
2. A rover is a kind of industrial robots.	X				
A rover is a kind of mobile robots.					
3. The inverse of the rotation matrix is its transpose.					
The inverse of the rotation matrix is its transpose as one of its properties :					
$R^{-1} = R^T$					
4. The dimension of SO(3) is 3.					
The dimension of SO(3) is 3 as Special Orthogonal group of order <i>n</i>					
includes matrices of dimension <i>n</i> x <i>n</i>					
$R_{n \times n} \in SO(n)$					
5. If r_1 and r_2 are two rows in a rotation matrix, then $r_1 r_2^T = 0$.	\checkmark				
as rotation matrix columns (rows) are mutually orthogonal (i.e. its dot					
product is zero). For example:					
$R = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ $r_1 r_2^T = -\cos(\theta)\sin(\theta) + \cos(\theta)\sin(\theta) = 0$					

For the three link manipulator shown in figure:

- a) What is the term for the set of all points that the end effector can reach? **Robot workspace or Robot Work envelope**.
- b) Draw the set of all points that the end effector can reach where the base joint angle is limited to $\pm 180^\circ$, L1 > L2 > L3 and L2 + L3 > L1.

Note: due to the typo in L2 + L3 > L1 (it was meant to be L2 + L3 < L1), if the answer is given as a full disk, it is also accepted as a correct answer.

CSE4316 Robots Midterm Exam (2016)

Problem 3

Two coordinate frames A(x, y, z) and B(x', y', z') are shown below. The origin of $\{B\}$ with respect to $\{A\}$ is given by $[1\ 2\ 3]^T$

Find H_B^A (i.e. ^AB, the homogeneous transformation matrix to represent B w.r.t. A).

<u>Alt.1:</u>

Assume that initially the frames are coincident. First **translate** B 1 unit in x, 2 units in y and 3 units in z axis. Then, **Rotate** about $x' -90^\circ$. Then **Rotate** about $z' 90^\circ$.

CSE4316 Robots Midterm Exam (2016)

<u>Alt.2:</u>

First Rotate about x -90°. Then rotate about y 90°. Then translate 1 unit in x, 2 units in y and 3 units in z axis.

Therefore:
^AB = R_Y(90) R_X(-90) Trans(1,2,3)
^AB =
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

 $H_B^A = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ -1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

A planar 2–link RRP robot is given in the figure below.

a) What are its configuration space variables?

configuration space variables are : $\begin{bmatrix} \theta_1 & \theta_2 & d_3 \end{bmatrix}^T$

b) Find its forward kinematics

Note that $\beta = 180^{\circ} - [90^{\circ} + \theta_1 + \theta_2] = 90^{\circ} - (\theta_1 + \theta_2)$

> $\sin(\beta) = \sin[90^{\circ} - (\theta_1 + \theta_2)] = \cos[-(\theta_1 + \theta_2)] = \cos(\theta_1 + \theta_2) = C_{12}$ $\cos(\beta) = \cos[90^{\circ} - (\theta_1 + \theta_2)] = \sin[-(\theta_1 + \theta_2)] = -\sin(\theta_1 + \theta_2) = -S_{12}$

> > $x = L_1 \cos \theta_1 - L_2 \sin(\theta_1 + \theta_2) + d_3 \cos(\theta_1 + \theta_2)$ $y = L_1 \sin \theta_1 + L_2 \cos(\theta_1 + \theta_2) + d_3 \sin(\theta_1 + \theta_2)$

$$H_{3}^{0} = \begin{bmatrix} c_{1} - s_{1} & 0 & 0 \\ s_{1} & c_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$\begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = H_{3}^{0} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
$$X = L_{1}C_{1} - L_{2}S_{12} + d_{3}C_{12}$$
$$Y = L_{1}S_{1} - L_{2}C_{12} + d_{3}S_{12}$$

For the three-link PRR manipulator shown in the following figure

- (a) Assign appropriate frames for D-H representation (draw them on the figure).
- (b) Fill out the D-H parameters table.
- (c) Write all the *A* matrices.
- (d) Write the H_H^0 (hand frame relative to base frame) in terms of the A matrices.

(b)

Link	θ	d	а	α
1	0	d_{I}	L_{I}	0
2	$ heta_2$	0	L_2	0
3	θ_3	0	L_3	0

(c) Using the given:

	$\cos\theta_i$	$-\cos\alpha_i\sin\theta_i$	$\sin lpha_i \sin heta_i$	$a_i \cos \theta_i$
$A_i =$	$\sin \theta_i$	$\cos \alpha_i \cos \theta_i$	$-\sin \alpha_i \cos \theta_i$	$a_i \sin \theta_i$
	0	$\sin lpha_i$	$\cos \alpha_i$	d_i
	0	0	0	1

and substituting with parameter values as given in the DH-parameter table, we get:

$$A_{1} = \begin{bmatrix} 1 & 0 & 0 & \ell_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{2} = \begin{bmatrix} C_{2} & -S_{2} & 0 & \ell_{2}C_{2} \\ S_{2} & C_{2} & 0 & \ell_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A_{3} = \begin{bmatrix} C_{3} & -S_{3} & 0 & \ell_{3}C_{3} \\ S_{3} & C_{3} & 0 & \ell_{3}S_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

(**d**)
$$H_{H}^{0} = A_{1}A_{2}A_{3} = \begin{bmatrix} C_{23} & -S_{23} & 0 & \ell_{2}C_{2} + \ell_{3}C_{23} + \ell_{1} \\ S_{23} & C_{23} & 0 & \ell_{2}S_{2} + \ell_{3}S_{23} \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Note: you may need some or none of these identities:

$$R_{X}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix},$$

$$R_{Y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix},$$

$$R_{Z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$A_{i} = \begin{bmatrix} \cos \theta_{i} & -\cos \alpha_{i} \sin \theta_{i} & \sin \alpha_{i} \sin \theta_{i} & a_{i} \cos \theta_{i} \\ \sin \theta_{i} & \cos \alpha_{i} \cos \theta_{i} & -\sin \alpha_{i} \cos \theta_{i} & a_{i} \sin \theta_{i} \\ 0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\sin \theta = -\sin(-\theta) = -\cos(\theta + 90^\circ) = \cos(\theta - 90^\circ),$$
$$\cos \theta = \cos(-\theta) = \sin(\theta + 90^\circ) = -\sin(\theta - 90^\circ).$$

$$\cos(\theta_1 \pm \theta_2) = c_{12} = c_1 c_2 \pm s_1 s_2,$$

$$\sin(\theta_1 \pm \theta_2) = s_{12} = c_1 s_2 \pm s_1 c_2,$$

$$c^2 \theta + s^2 \theta = 1.$$

$$A^2 = B^2 + C^2 - 2BC \cos a.$$

$$\sin(\alpha \mp \beta) = \sin \alpha \cos \beta \mp \sin \beta \cos \alpha$$
$$\cos(\alpha \mp \beta) = \cos \alpha \cos \beta \pm \sin \beta \sin \alpha$$
if
$$\cos \theta = b$$
 then
$$\theta = A \tan 2(\pm \sqrt{1 - b^2}, b)$$
if
$$\sin \theta = b$$
 then
$$\theta = A \tan 2(b, \pm \sqrt{1 - b^2})$$

if $a\cos\theta + b\sin\theta = c$ then $\theta = A\tan 2(b,a) + A\tan 2(\pm\sqrt{a^2 + b^2 - c^2}, c)$ if $a\cos\theta - b\sin\theta = 0$ then $\theta = A\tan 2(a,b)$ and $\theta = A\tan 2(-a,-b)$

CSE4316 Robots Midterm Exam (2016)