CSE421: Digital Control

Assignment 5

Controller Design

Q1. A second-order continuous-time system is required to have a damping ratio of 0.7, and a settling time of about 1 s.

- (a) Find the system poles in the s-plane.
- (b) Find the corresponding poles in the z-plane, using the mapping $z = e^{sT}$, if the input and the output of the system are sampled every 0.1 sec.
- **Q2.** The open-loop transfer function of a plant is given by:

$$
G(s) = \frac{e^{-4s}}{2s+1}
$$

Which is to be preceded by a ZOH circuit.

- (a) Design a dead-beat digital controller for the system. Assume that $= 1$ s.
- (b) Draw the block diagram of the system together with the controller.
- (c) Plot the time response of the system.

Q3. Repeat Q2 using a Dahlin controller in order to achieve a closed-loop firstorder response with a time constant 1 sec. Plot the response and compare with the results obtained from the dead-beat controller.

Q4. The open-loop transfer function of a unity feedback system is

$$
G(s) = \frac{10}{s(s+10)}.
$$

Note that $G(s)$ is to be preceded by a ZOH. Assume that $T = 1$ s and design a controller so that the system response to a unit step input is

$$
y(kT) = 0
$$
, 0.4, 1, 1, ...

Q5. The open-loop transfer function of a system together with a zero-order hold is given by

$$
HG(z) = \frac{0.2(z+0.8)}{z^2 - 1.5z + 0.5}.
$$

Design a digital controller so that the closed-loop system will have $\zeta = 0.6$ and w_d $=$ 3 rad/s. The steady-state error to a step input should be zero. Also, the steady state error to a ramp input should be 0.5. Assume that $T = 0.2$ s.

Q6. The open-loop transfer function of a system is

$$
G(s) = \frac{e^{-0.16s}}{0.2s + 1}
$$

The system is preceded by a sampler and a zero-order hold. The closed-loop system is required to have a time constant of 0.4 s. assume the sample period is 0.04.

(a) Determine the digital controller $D(z)$.

(b)Plot the unit step time response of the system with the controller.

Q7. Design a digital controller, D(z), such that the poles of the following closedloop system are placed at $z1,2 = 0.4 \pm i0.4$ in the z-plane. The steady-state error in the step response must be zero.

Q8. It is required to design a controller for the following system to achieve percent overshoot (PO) less than 20 %, settling time ts ≤ 10 s (2% criterion), and zero steady state error for step and ramp inputs. Assume that the sampling time is, $T =$ 0.1 s and $K = 0.4$.

Derive the transfer function of the required digital controller.

Q9. It is required to design a controller for the following closed-loop system such that percent overshoot (PO) less than 15 % and settling time ts ≤ 10 s (2%) criterion), and zero steady state error for step and ramp inputs. Assume that the sampling time is, $T = 0.2$ s and $K = 0.4$.

Derive the transfer function of the required digital controller.

Q10. The open-loop unit step responses of two systems are shown below. Obtain the transfer function of these systems and use the Ziegler–Nichols tuning algorithm to design discrete-time:

- (a) proportional controller;
- (b) PI controller;
- (c) PID controller.

Q11. Explain what integral wind-up is when a PID controller is used. How can integral wind-up be avoided?

Q12. Explain what derivative kick is when a PID controller is used. How can derivative kick be avoided?

Q13. The continuous-time PI controller has the transfer function

$$
\frac{U(s)}{E(s)} = \frac{K_p s + K_i}{s}.
$$

Derive the equivalent discrete-time controller transfer function using the bilinear transformation:

$$
s = \frac{2}{T} \frac{z - 1}{z + 1}.
$$

Q14. A commonly used compensator in the s-plane is the lead lag, or lag lead with transfer function

$$
\frac{U(s)}{E(s)} = \frac{s+a}{s+b}.
$$

Find the equivalent discrete-time controller using the bilinear transformation.

Q15. Consider the following model

$$
y(k) = ay(k-1) + bu(k-1) + e(k)
$$

where $y(k)$ is the system output at instant k, and $e(k)$ is an equation error. Given the following input output data,

- (a) deduce the matrix Φ.
- (b) calculate the least squares estimate of a and b.
- (c) calculate the model output.

(d) calculate the residuals.

Q16. Consider the following model

$$
y(k) = a_1 y(k-1) + a_2 y(k-2) + bu(k-1) + e(k)
$$

where $y(k)$ is the system output at instant k, and $e(k)$ is an equation error. Given the same input output data in the previous question,

- a) deduce the matrix Φ.
- b) calculate the least squares estimate of a_1 , a_2 and b.
- c) calculate the model output.
- d) calculate the residuals. Comment on the values of the residuals.