

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Lecture 14: Pole placement (Regulator Problem)

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of $_{N+2}$ the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture 14 Pole placement (Regulator Problem)

• Introduce the concept of controllability of dynamic systems.

• Explain pole placement using the state feedback approach.

Controllability

The system (Φ, Γ) is *controllable* if there is a control input sequence $u(0), u(1) \dots u(n-1)$ that can move the system from an arbitrary initial state $x(0) = x_i$ to an arbitrary final state $x(n) = x_f$.

• The system state equation is

 $x(k+1) = \Phi x(k) + \Gamma u(k)$

• Iterating this equation for *n* steps, we find

$$x(1) = \Phi x_i + \Gamma u(0)$$

$$x(2) = \Phi x(1) + \Gamma u(1)$$

$$= \Phi^2 x_i + \Phi \Gamma u(0) + \Gamma u(1)$$

$$\vdots$$

$$x(n) = \Phi^n x_i + \begin{bmatrix} \Gamma & \Phi \Gamma & \cdots & \Phi^{n-1} \Gamma \end{bmatrix} \begin{bmatrix} u(n-1) \\ \vdots \\ u(1) \\ u(0) \end{bmatrix}$$

To have x(n) = x_f, we must be able to solve the following n equations for the control sequence u(k).

$$\begin{bmatrix} \Gamma & \Phi \Gamma & \cdots & \Phi^{n-1} \Gamma \end{bmatrix} \begin{bmatrix} u(n-1) \\ \vdots \\ u(1) \\ u(0) \end{bmatrix} = x_f - \Phi^n x_i$$

• Note that, for **single-input** systems, the following matrix is of size n x n.

$$\Delta_c = \begin{bmatrix} \Gamma & \Phi \Gamma & \cdots & \Phi^{n-1} \Gamma \end{bmatrix}$$

- The system is *controllable* if the above equations have a solution for the control sequence. This is achieved if the matrix Δ_c , called the *controllability* matrix, is nonsingular or, more generally, has full rank *n*.
- Matrix rank = the number of linearly independent columns or rows.

• Check the controllability of the system

$$x(k+1) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u(k)$$

The controllability matrix :

$$\Delta_c = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \Rightarrow \text{rank} = 2 \Rightarrow \text{system is controllable}$$

• MATLAB functions to compute the controllability matrix and check its rank:

CO = ctrb(A,B) rank(CO)

• Check the controllability of the system

$$x(k+1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} x(k) + \begin{pmatrix} 1 \\ 1 \end{pmatrix} u(k)$$
$$\Delta_{c} = \begin{bmatrix} \Gamma & \Phi \Gamma \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \Rightarrow \text{rank} = 1 \Rightarrow \text{system is not controllable}$$

• In order to understand why this system is not controllable, rewrite the state equation as:

$$x_1(k+1) = x_1(k) + u(k)$$
$$x_2(k+1) = x_2(k) + u(k)$$

• If $x_1(0) = x_2(0)$, then $x_1(k) = x_2(k)$ for all k. Suppose that we want $x_{1f} \neq x_{2f}$, there is no input sequence to achieve this final state. Hence, this system is not completely state controllable.

State feedback & Pole Placement

• In the state feedback approach, instead of using controllers with fixed configuration in the forward path,

 control signal u(k) is a calculated as a *linear combination of the measured state* variables.

- Using state feedback, the poles or eigenvalues of the closed-loop system can be placed at specified locations (also called pole assignment or allocation).
- Poles can arbitrarily be placed if and only if the system is *controllable*.

State feedback block diagram

• A linear system (Φ,Γ,C) with constant state feedback gain matrix K:

• The control signal *u(k)* is simply a linear combination of all state variables:

$$u(k) = -Kx(k).$$

- It is assumed, for now, that the reference input *r(k)* is zero (i.e. a regulator problem) and that all the states are available for feedback that is, we have access to the complete state x(k) for all k.
- The objective of the state feedback design is to determine the matrix **K**
 - for single-input systems, K is a row vector of size 1 x n.

• The linear system and the feedback control law are given by:

$$x(k+1) = \Phi x(k) + \Gamma u(k),$$

$$y(k) = Cx(k)$$

$$u(k) = -Kx(k)$$

Substituting by u(k) in the state equation yields the closed-loop state equation

$$x(k+1) = \overbrace{(\Phi - \Gamma K)}^{\Phi_{cl}} x(k)$$
$$y(k) = Cx(k)$$

Where $\Phi_{cl} = \Phi - \Gamma K$, is the state matrix of the closed-loop system.

Theorem: State feedback

If the pair (Φ, Γ) is **controllable**, then

there exists a feedback gain matrix *K* that arbitrarily assigns the closed-loop system poles to any set $[\lambda_1, \lambda_2, ..., \lambda_n]$.

That is the eigenvalues of the closed-loop state matrix

$$\Phi_{cl} = \Phi - \Gamma K$$

can be arbitrarily assigned.

pole placement by equating coefficients

1. Evaluate the desired characteristic polynomial from the specified eigenvalues using the expression

$$\prod_{i=1}^{n} (\lambda - \lambda_i) = 0$$

2. Evaluate the closed-loop characteristic polynomial using the expression

 $\det[\lambda I - (\Phi - \Gamma K)] = 0.$

Compare the two polynomials in 1 & 2 to get the entries of the gain matrix
 K.

Assign the eigenvalues $\{0.3\pm j0.2\}$ to the pair

$$\Phi = \begin{pmatrix} 0 & 1 \\ 3 & 4 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Solution:

• For the given eigenvalues, the desired characteristic polynomial is

$$\Delta = (\lambda - 0.3 + j0.2)(\lambda - 0.3 - j0.2) = \lambda^2 - 0.6\lambda + 0.13$$

• The closed-loop state matrix is

$$\Phi_{cl} = \Phi - \Gamma K = \begin{pmatrix} 0 & 1 \\ 3 & 4 \end{pmatrix} - \begin{pmatrix} 0 \\ 1 \end{pmatrix} (k_1 & k_2) = \begin{pmatrix} 0 & 1 \\ 3 - k_1 & 4 - k_2 \end{pmatrix}$$

• The closed-loop characteristic polynomial is

$$\begin{vmatrix} \lambda I - A_{cl} \end{vmatrix} = \begin{vmatrix} \lambda & -1 \\ -(3 - k_1) & \lambda - (4 - k_2) \end{vmatrix} = 0$$
$$\Rightarrow \lambda^2 - (4 - k_2)\lambda - (3 - k_1) = 0$$

• Comparing with the desired characteristic polynomial,

$$\Delta = \lambda^2 - 0.6\lambda + 0.13$$

• Gives

$$k_1 = 3.13, \quad k_2 = 3.4$$

• To check, use MATLAB commands:

Controllable canonical form

- The algebra for finding the state feedback gain matrix K for systems with n > 2 becomes quite tedious.
- However, it is specially simple if the system matrices happen to be in the **controllable canonical form**.
- For a third order system, this form is:

$$\Phi = \begin{bmatrix} a_1 & a_2 & a_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \quad \Gamma = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} b_1 & b_2 & b_3 \end{bmatrix}$$

Design a feedback controller for the pair

$$\Phi = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

to obtain the eigenvalues {0.1, 0.4±j0.4}.

Answer

• For the given eigenvalues, the desired characteristic polynomial is

$$\Delta = (\lambda - 0.1)(\lambda - 0.4 + j0.4)(\lambda - 0.4 - j0.4)$$

= $\lambda^3 - 0.9\lambda^2 + 0.4\lambda - 0.032.$

• The closed-loop state matrix is

$$\begin{split} \Phi_{cl} &= \Phi - \Gamma K = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} k_1 & k_2 & k_3 \end{pmatrix} = \begin{pmatrix} 1 - k_1 & 2 - k_2 & 3 - k_3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ & \left| \lambda I - \Phi_{cl} \right| = \begin{vmatrix} \lambda - 1 + k_1 & k_2 - 2 & k_3 - 3 \\ -1 & \lambda & 0 \\ 0 & -1 & \lambda \end{vmatrix} = \lambda^2 (\lambda - 1 + k_1) + \lambda (k_2 - 2) + (k_3 - 3) \\ &= \lambda^3 + (k_1 - 1)\lambda^2 + (k_2 - 2)\lambda + (k_3 - 3) \\ &\implies k_1 = 0.1, \quad k_2 = 2.4, \quad k_3 = 2.968 \end{split}$$

Selecting desired pole locations

- The locations of the poles (eigenvalues) in the z-plane are directly related to the transient response of the system.
- For example, the smaller is the distance of the pole from the origin, the faster is the response associated with it.
- Also, the contours of constant damping ratio (which determines percent overshoot) are spirals as shown.

= 0.7

Note on selecting desired pole locations!

- Seeking a closed-loop response that is much faster than the slowest component response (often the plant) will lead to high gains for the state feedback matrix and consequently to a high control effort which may saturate one or more components.
- For example, if all closed-loop eigenvalues are placed at the origin of the complex plane (i.e. deadbeat control), the resulting control law can assume unacceptably high values.

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.