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Lecture	14

Pole	placement	

(Regulator	Problem)

1

• Introduce	the	concept	of	controllability	of	dynamic	systems.

• Explain	pole	placement	using	the	state	feedback	approach.



Controllability

The	system	(Φ,	Γ)	is	controllable if	there	is	a	control	input	sequence	
u(0),	u(1)	.	.	.	u(n-1)	that	can	move	the	system	from	an	arbitrary	
initial	state	x(0) =	xi to	an	arbitrary	final	state	x(n) =	xf.

2

Controllable	system uncontrollable	system:	there	is	no	input	

to	move	the	system	from	state	xi to	xf



• The	system	state	equation	is

• Iterating	this	equation	for	n steps,	we	find
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• To	have	x(n) =	xf,	we	must	be	able	to	solve	the	following	n equations	for	the	control	
sequence	u(k).

• Note	that,	for	single-input systems,	the	following	matrix	is	of	size	n	x	n.	

• The	system	is	controllable if	the	above	equations	have	a	solution	for	the	control	
sequence.	This	is	achieved	if	the	matrix	Δc	,	called	the	controllabilitymatrix,	is	
nonsingular	or,	more	generally,	has	full	rank	n.

• Matrix	rank	=	the	number	of	linearly	independent	columns	or	rows.
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Example	1

• Check	the	controllability	of	the	system

• MATLAB	functions	to	compute	the	controllability	matrix	
and	check	its	rank:

CO = ctrb(A,B) 

rank(CO)
5
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Example	2

• Check	the	controllability	of	the	system

• In	order	to	understand	why	this	system	is	not	controllable,	rewrite	the	
state	equation	as:

• If	x1(0)	=	x2(0),	then	x1(k)	=	x2(k)	for	all	k.	Suppose	that	we	want	x1f ≠	x2f,	
there	is	no	input	sequence	to	achieve	this	final	state.	Hence,	this	system	is	
not	completely	state	controllable.
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State	feedback	&	Pole	Placement

• In	the	state	feedback	approach,	instead	of	using	controllers	with	fixed	
configuration	in	the	forward	path,	

o control	signal	u(k) is	a	calculated	as	a	linear	combination	of	the	measured	state	

variables.

• Using	state	feedback,	the	poles	or	eigenvalues	of	the	closed-loop	
system	can	be	placed	at	specified	locations	(also	called	pole	
assignment	or	allocation).

• Poles	can	arbitrarily	be	placed	if	and	only	if	the	system	is	controllable.
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State	feedback	block	diagram

• A linear system (Φ,Γ,C) with constant state feedback gain matrix K :

• The control signal u(k) is simply a linear combination of all state variables:

• It is assumed, for now, that the reference input r(k) is zero (i.e. a regulator problem)
and that all the states are available for feedback – that is, we have access to the
complete state x(k) for all k.

• The objective of the state feedback design is to determine the matrix K

Ø for single-input systems, K is a row vector of size 1 x n. 8
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• The	linear	system	and	the	feedback	control	law	are	given	by:

• Substituting	by	u(k) in	the	state	equation	yields	the	closed-loop	state	

equation

Where	Φcl = Φ-ΓK, is the state matrix of the closed-loop system.
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Theorem:	State	feedback

If the pair (Φ,Γ) is controllable, then

there exists a feedback gain matrix K that arbitrarily assigns the closed-loop

system poles to any set [λ1, λ2, …, λn].

That is the eigenvalues of the closed-loop state matrix

can be arbitrarily assigned.
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pole placement by equating coefficients

11

1. Evaluate	the	desired	characteristic	polynomial		from	the	specified	

eigenvalues	using	the	expression	

2. Evaluate	the	closed-loop	characteristic	polynomial		using	the	expression	

3. Compare	the	two	polynomials	in	1	&	2	to	get	the	entries	of	the	gain	matrix	

K.	
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Example	3

Assign	the	eigenvalues	{0.3± j0.2}	to	the	pair

Solution:

• For	the	given	eigenvalues,	the	desired	characteristic	polynomial	is

• The	closed-loop	state	matrix	is	
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• The	closed-loop	characteristic	polynomial	is	

• Comparing	with	the	desired	characteristic	polynomial,

• Gives

• To	check,	use	MATLAB	commands:
>> A = [0, 1; 3, 4];

>> B = [0;  1];
>> poles = [0.3+j*0.2, 0.3–j*0.2];
>> K = place(A, B, poles)

K = 3.13   3.40
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Controllable	canonical	form

• The	algebra	for	finding	the	state	feedback	gain	matrix	K for	systems	
with	n	>	2	becomes	quite	tedious.	

• However,	it	is	specially	simple	if	the	system	matrices	happen	to	be	in	
the	controllable	canonical	form.	

• For	a	third	order	system,	this	form	is:
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Design	a	feedback	controller	for	the	pair

to	obtain	the	eigenvalues	{0.1,	0.4±j0.4}.	

Example	4
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Answer	

• For	the	given	eigenvalues,	the	desired	characteristic	polynomial	is

• The	closed-loop	state	matrix	is	
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Selecting	desired	pole	locations

• The	locations	of	the	poles	(eigenvalues)	in	the	z-plane	are	
directly	related	to	the	transient	response	of	the	system.		

• For	example,	the	smaller	is	the	distance	of	the	pole	from	the	
origin,	the	faster is	the	response	associated	with	it.

• Also,	the	contours	of	constant	damping	ratio	(which	
determines	percent	overshoot)	are	spirals	as	shown.	
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Note	on	selecting	desired	pole	locations!

• Seeking	a	closed-loop	response	that	is	much	faster	than	the	slowest	
component	response	(often	the	plant)	will	lead	to	high	gains	for	the	state	
feedback	matrix	and	consequently	to	a	high	control	effort	which	may	
saturate	one	or	more	components.	

• For	example,	if	all	closed-loop	eigenvalues	are	placed	at	the	origin	of	the	
complex	plane	(i.e.	deadbeat	control),	the	resulting	control	law	can	
assume	unacceptably	high	values.
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Thanks for your attention.

Questions?
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