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Lecture: 13

Discrete State-Space Models

State transformation

Discretization of Continuous-Time State Space Models
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Different state-space representations

As mentioned earlier, there is infinite number of choices for system state, and
corresponding system matrices.

Here, we will introduce the idea of state transformations between different state
descriptions.

Next, three standard state space descriptions are presented.
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State transformation

Given state and output equations:

ẋ = A x + B u

y = C x + D u

let a new state vector z be defined by:

z = Tx , Tn×n non-singular matrix

Note that T must be invertible to permit mapping between both state vectors, thus:

x = T−1z
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State transformation

Now, starting with the new state z , we have:

z = Tx

ż = Tẋ = T (Ax + Bu) = TAx + TBu

ż = TAT−1z + TBu new state

y = CT−1z + Du description

the eigenvalues of original system matrix A and new matrix TAT−1 are the same

For this reason these matrices are called similar.

MATLAB command to transform a state-space model using the transformation z = Tx :
[Al,Bl,Cl,Dl] = ss2ss(A,B,C,D,T)
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Controllable Canonical Form

Consider the third-order transfer function:

Y (s)

U(s)
=

b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

To obtain a state space representation of this system, we rewrite:

Y (s) =
b2s

2 + b1s + b0

s3 + a2s2 + a1s + a0
U(s) = (b2s

2 + b1s + b0)
1

s3 + a2s2 + a1s + a0
U(s)

︸ ︷︷ ︸

V (s)

The newly introduced variable v is related to u as:
...
v + a2v̈ + a1v̇ + a0v = u ⇒

...
v = −a2v̈ − a1v̇ − a0v + u

And the output y is formed by:

y = b2v̈ + b1v̇ + b0v
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Controllable Canonical Form

Taking the state variables as:

x1 = v

x2 = v̇

x3 = v̈

⇒
ẋ1 = x2
ẋ2 = x3
ẋ3 = −a0x1 − a1x2 − a2x3 + u

Thus the state space description is:





ẋ1
ẋ2
ẋ3



 =





0 1 0
0 0 1

−a0 −a1 −a2









x1
x2
x3



+





0
0
1



 u(t)

This form is known as controllable canonical form. It is a minimal form and is specially
useful in finding state-variable feedback laws as we will see later.
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Observable Canonical Form

This form is useful when designing an observer, or state estimator. It can be derived in a
similar manner to controllable canonical form, one version of the result is:





ẋ1
ẋ2
ẋ3



 =





−a2 1 0
−a1 0 1
−a0 0 0









x1
x2
x3



+





b2
b1
b0



 u(t)

y(t) =
[
1 0 0

]





x1
x2
x3





With the observable canonical form the output y = x1.
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Diagonal (Decoupled) Form

The simplest representation of SS system
is when state equations are decoupled

that is when system matrix A is diagonal:

A =








λ1

λ2

. . .

λn








vector x is an eigenvectorfor a matrix A

if:
A x = λ x

λ is eigenvalue (real or complex scalar).

Eigenvectors represent the natural
response modes of the system.
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Eigenvalues and Eigenvectors

To find the eigenvalues of a matrix A, we solve the equation:

A x = λ x ⇒ λx − Ax = 0 ⇒ (λI − A)x = 0

For this equation to have a non-trivial solution for x (i.e. x 6= 0), matrix (λI − A) must
be singular, therefore it must have a zero determinant, i.e.

|λI − A| = 0

Note that this equation is also the characteristic equation of the system. Therefore,
system poles and eigenvalues are the same (for minimal state space description!).
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Eigenvalues and Eigenvectors

nth order system will (usually) have n distinct eigenvalues λ1, λ2, · · · , λn

Given an eigenvalue λi , the corresponding eigenvector xi is obtained by solving the
equation:

(λi I − A)xi = 0

MATLAB function eig finds the eigenvalues and eigenvectors of a matrix A:

1 [Vectors ,Values] = eig(A)
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Eigenvalues and Eigenvectors
Example 3

Example

Find the eigenvalues of the system with the following state space description matrices:

A =

[
0 1
−4 −2

]

, B =

[
0
1

]

, C =
[
1 0

]
, D = 0

The eigenvalues are the roots of the following equation:

|λI − A| =

∣
∣
∣
∣

λ −1
4 λ+ 2

∣
∣
∣
∣
= λ2 + 2λ+ 4 = 0 ⇒ λ1,2 = −1± j1.7321
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Discretization of Continuous-Time State Space Models

Usually, a physical system is modeled in the form of differential equations (i.e.
continuous-time).

To apply digital control theory, these state space models are transformed to discrete-time
(called discretization).
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Discrete-time state space model

To avoid confusion with the continuous system matrices, we use symbols Φ and Γ instead
of A and B for the discrete system. h is the sample period.
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Solution of the continuous-time state equation

Consider the state equation:
ẋ(t) = Ax(t) + Bu(t)

The right-hand side consists of two parts, the first of these, A x(t), is the homogeneous
part while the second, B u(t), is the input portion.

Let us first examine the homogeneous part.
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Solution of the continuous-time state equation
Homogeneous solution

Consider the homogeneous (no input) state equation

ẋ(t) = Ax(t)

It can be shown by direct substitution that the solution to this equation is given by

x(t) = eAtx(0)

where the matrix exponential is defined as

eAt = I + At +
A2t2

2!
+

A3t3

3!
+ · · ·

MATLAB function expm can be used for numerical evaluation of the matrix exponential.
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Solution of the continuous-time state equation
Homogeneous solution – Another method to evaluate eAt

Taking Laplace transform of:

ẋ(t) = Ax(t)

sX (s)− x(0) = AX (s),

(sI − A)X (s) = x(0)

X (s) = (sI − A)−1x(0).

Now, taking the inverse Laplace transform, we get:

x(t) = L
−1
{

(sI − A)−1
}

x(0)

Comparing with the previous solution,

x(t) = eAtx(0)

gives another way to calculate the matrix exponential:

eAt = L
−1
{
(sI − A)−1

}
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Special case:

If the system matrix A is diagonal (the eigenvalues λi are along the diagonal), then the
matrix exponential is also diagonal and is given by:

A =








λ1

λ2

. . .

λn







⇒ eAt =








eλ1t

eλ2t

. . .

eλnt







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The general state equation

Now consider the general state equation:

ẋ(t) = Ax(t) + Bu(t)

Taking Laplace transform:

sX (s)− x(0) = AX (s) + BU(s),

(sI − A)X (s) = x(0) + BU(s)

X (s) = (sI − A)−1x(0) + (sI − A)−1BU(s)

Now, taking the inverse Laplace transform, we get:

x(t) = eAtx(0) +

t∫

τ=0

eA(t−τ)Bu(τ)dτ

y(t) = CeAtx(0) + C

t∫

τ=0

eA(t−τ)Bu(τ)dτ
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The general state equation

Let the initial time be t0 different from 0, then:

x(t) = eA(t−t0)x(t0) +

t∫

τ=t0

eA(t−τ)Bu(τ)dτ

Now define:
t0 = kh, t = kh + h

Then:

x(kh + h) = eAhx(kh) +

kh+h∫

τ=kh

eA(kh+h−τ)Bu(τ)dτ

Let us assume, thanks to the ZOH, that:

u(t) = u(kh), kh ≤ t < kh + h
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The general state equation

Then:

x(kh + h) = eAhx(kh) +





kh+h∫

τ=kh

eA(kh+h−τ)Bdτ



 u(kh)

Let us define:
λ = kh + h − τ

Then:

x(kh + h) = eAhx(kh) +





h∫

λ=0

eAλB dλ



 u(kh)
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The general state equation

Thus we arrive at the discrete-time state space description:

x(kh + h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh)

Where:

Φ = eAh, Γ =

h∫

0

eAλBdλ

Note that the c2d command can be used to convert continuous into discrete state space
models.
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Discretization of Continuous-Time State Space Models

Given continuous system state-space equations:

ẋ = A x + B u

y = C x + D u

Its discrete equivalent state-space model is given as:

x(kh + h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh)

Where:

Φ = eAh, Γ =

h∫

0

eAλ B dλ

eAt = L
−1
{
(sI − A)−1

}
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Discretization of Continuous-Time State Space Models
Example 1

Example

Find a discrete-time state space description of an integrator, ẏ = u.

Let x1 = y ⇒ ẋ1 = u

Then a continuous-time state space model of the system is:

ẋ1 = (0)x1 + (1)u, y = (1)x1

A = 0, B = 1, C = 1.
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Discretization of Continuous-Time State Space Models
Example 1

Then we evaluate the matrices Φ and Γ of the discrete model:

Φ = eAh = 1, Γ =

h∫

t=0

eAtBdt =

h∫

t=0

(1)dt = h

x(k + 1) = 1.x(k) + h.u(k)

y(k) = 1.x(k)
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Discretization of Continuous-Time State Space Models
Example 2

Example

Find a discrete-time state space description of a double integrator, ÿ = u.

x1 = y ⇒ ẋ1 = x2

x2 = ẏ ⇒ ẋ1 = ÿ = u

Then a continuous-time state space model of the system is:

ẋ(t) =

[
0 1
0 0

]

x(t) +

[
0
1

]

u(t)

y(t) =
[
1 0

]
x(t)
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Discretization of Continuous-Time State Space Models
Example 2

The matrix exponential is found as follows:

eAt = L−1
{

(sI − A)−1
}

= L−1

{(
s −1
0 s

)−1
}

= L−1

{
1

s2

(
s 1
0 s

)}

= L−1

{(
1/s 1/s2

0 1/s

)}

=

(
1 t

0 1

)

The matrices Φ and Γ are then found as:

eAt =

(
1 t

0 1

)

⇒ Φ = eAh =

(
1 h

0 1

)

Γ =

h∫

t=0

(
1 t

0 1

)(
0
1

)

dt =

h∫

t=0

(
t

1

)

dt =

(
t2/2
t

)∣
∣
∣
∣

h

0

=

(
h2/2
h

)
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Discretization of Continuous-Time State Space Models
Example 2

The discrete-time state space model is thus given as:

x(kh + h) =

[
1 h

0 1

]

x(kh) +

[
h2/2
h

]

u(kh)

y(kh) =
[
1 0

]
x(kh)
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Advantages of state space description

Well-suited to computer calculation.

Controller design approach for multiple-inputs multiple-outputs (MIMO) systems is the
same as for single-input single-output (SISO) systems.

With the state-space formulation, the internal behavior of the system is exposed, rather
than the input-output modeling of transform (i.e. transfer function based) methods.
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Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.

Mohammed Nour A. Ahmed
mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io
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