

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Lecture 10: Discrete Controller Design (Deadbeat & Dahlin Controllers)

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of $_{N+2}$ the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

500

Lecture: 10 Discrete Controller Design (Deadbeat & Dahlin Controllers)

- Deadbeat controller
- Dahlin controller

- Its aim is to bring the output to steady state in smallest number of time steps
 - assuming, for simplicity, that the set point is a step input.

・ロト ・得ト ・ヨト ・ヨト

- Its aim is to bring the output to steady state in smallest number of time steps
 - assuming, for simplicity, that the set point is a step input.

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

• Therefore, the desired closed-loop transfer function is

$$T(z)=z^{-k}, \qquad k\geq 1$$

э

イロト イポト イヨト イヨト

• Therefore, the desired closed-loop transfer function is

$$T(z)=z^{-k}, \qquad k\geq 1$$

• and the controller achieving this response is given by:

$$D(z) = \frac{1}{GH(z)} \frac{T(z)}{1 - T(z)} = \frac{1}{GH(z)} \left(\frac{z^{-k}}{1 - z^{-k}}\right) = \frac{1}{GH(z)} \left(\frac{1}{z^{k} - 1}\right)$$

・ロト ・得ト ・ヨト ・ヨト

• Therefore, the desired closed-loop transfer function is

$$T(z)=z^{-k}, \qquad k\geq 1$$

• and the controller achieving this response is given by:

$$D(z) = \frac{1}{GH(z)} \frac{T(z)}{1 - T(z)} = \frac{1}{GH(z)} \left(\frac{z^{-k}}{1 - z^{-k}}\right) = \frac{1}{GH(z)} \left(\frac{1}{z^{k} - 1}\right)$$

• It is interesting to note that deadbeat control is equivalent to placing all closed-loop poles at z = 0.

イロト イポト イヨト イヨト

• Therefore, the desired closed-loop transfer function is

$$T(z)=z^{-k}, \qquad k\geq 1$$

• and the controller achieving this response is given by:

$$D(z) = \frac{1}{GH(z)} \frac{T(z)}{1 - T(z)} = \frac{1}{GH(z)} \left(\frac{z^{-k}}{1 - z^{-k}}\right) = \frac{1}{GH(z)} \left(\frac{1}{z^{k} - 1}\right)$$

- It is interesting to note that deadbeat control is equivalent to placing all closed-loop poles at z = 0.
- These poles correspond to the fastest response possible.

• Therefore, the desired closed-loop transfer function is

$$T(z)=z^{-k}, \qquad k\geq 1$$

• and the controller achieving this response is given by:

$$D(z) = \frac{1}{GH(z)} \frac{T(z)}{1 - T(z)} = \frac{1}{GH(z)} \left(\frac{z^{-k}}{1 - z^{-k}}\right) = \frac{1}{GH(z)} \left(\frac{1}{z^{k} - 1}\right)$$

- It is interesting to note that deadbeat control is equivalent to placing all closed-loop poles at z = 0.
- These poles correspond to the fastest response possible.
 - ▶ Usually such requirement will come at the expense of large control signal.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Example

Example

The open-loop transfer function of a plant is given by:

$$G(s)=rac{e^{-2s}}{10s+1}$$

Design a dead-beat digital controller for the system. Assume that T = 1 s.

Example

Example

The open-loop transfer function of a plant is given by:

$$G(s)=rac{e^{-2s}}{10s+1}$$

Design a dead-beat digital controller for the system. Assume that T = 1 s.

• The transfer function of the system with a ZOH is given by

$$\begin{aligned} GH(z) &= \mathscr{Z}\left\{\frac{1-e^{-Ts}}{s}G(s)\right\} = (1-z^{-1})\mathscr{Z}\left\{\frac{e^{-2s}}{s(10s+1)}\right\} \\ &= (1-z^{-1})z^{-2}\mathscr{Z}\left\{\frac{1}{s(10s+1)}\right\} \end{aligned}$$

Example

• From the z-transform tables

$$\mathscr{Z}\left\{\frac{a}{s(s+a)}\right\} = \frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$$

So, $GH(z) = (1-z^{-1})z^{-2}Z\left\{\frac{0.1}{s(s+0.1)}\right\}$
$$= (1-z^{-1})z^{-2}\frac{z(1-e^{-0.1})}{(z-1)(z-e^{-0.1})}$$
$$= \frac{0.095}{z^3 - 0.904z^2}$$

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

6 / 19

3

◆□▶ ◆圖▶ ◆厘▶ ◆厘≯

Example

• From the z-transform tables

$$\mathscr{Z}\left\{\frac{a}{s(s+a)}\right\} = \frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$$

So, $GH(z) = (1-z^{-1})z^{-2}Z\left\{\frac{0.1}{s(s+0.1)}\right\}$
$$= (1-z^{-1})z^{-2}\frac{z(1-e^{-0.1})}{(z-1)(z-e^{-0.1})}$$
$$= \frac{0.095}{z^3 - 0.904z^2}$$

• Hence, the dead-beat controller is given by:

$$D(z) = \frac{1}{GH(z)} \frac{T(z)}{1 - T(z)} = \frac{z^3 - 0.904z^2}{0.095} \left(\frac{1}{z^k - 1}\right)$$

э

(日)、(四)、(日)、(日)

Example

• For realizability, we must choose $k \ge 3$.

3

イロト イポト イヨト イヨト

Example

- For realizability, we must choose $k \ge 3$.
- Choosing k = 3, we obtain the controller:

$$D(z) = \frac{z^3 - 0.904z^2}{0.095} \frac{1}{z^3 - 1} = \frac{z^3 - 0.904z^2}{0.095(z^3 - 1)}$$

э

イロト イポト イヨト イヨト

Example

- For realizability, we must choose $k \ge 3$.
- Choosing k = 3, we obtain the controller:

$$D(z) = rac{z^3 - 0.904z^2}{0.095} rac{1}{z^3 - 1} = rac{z^3 - 0.904z^2}{0.095(z^3 - 1)}$$

• With this controller, the block diagram of the closed-loop is:

Example

- For realizability, we must choose $k \geq 3$.
- Choosing k = 3, we obtain the controller:

$$D(z) = \frac{z^3 - 0.904z^2}{0.095} \frac{1}{z^3 - 1} = \frac{z^3 - 0.904z^2}{0.095(z^3 - 1)}$$

• With this controller, the block diagram of the closed-loop is:

• To analyze the designed system performance, we simulate the closed-loop step response and the control signal.

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

MATLAB code for Example

1

2 3

4

5

6

7

8

9

11 12

13

14

15

```
% Deadbeat control: D(z) = (z^3 - 0.904 z^2) / (0.095 (z^3 - 1))
Gp = tf(1, [10 \ 1], 'iodelay', 2);
Gpd = c2d(Gp, 1);
Gc = tf([1 -0.904 \ 0 \ 0], [0.095 \ 0 \ 0 -0.095], 1);
Gcl=Gc*Gpd/(1+Gc*Gpd);
t = 0:1:10;
y=step(Gcl,t)
figure; plot(t, y, 'o'); hold on; stairs(t, y); hold off
xlabel('time, t'), ylabel('output, y'), axis([0 10 0 1.2]),title('Step
    response')
Gru=Gc/(1+Gc*Gpd);
u=step(Gru,t)
figure; plot(t,u,'o'); hold on; stairs(t,u); hold off
xlabel('time, sec'), ylabel('control signal, u'), axis([0 10 0 15]), title('
    Control signal')
```

- 34

イロト 不得下 イヨト イヨト

Example

• As desired, the step response is unity after 3 seconds.

▲ 御 ▶ → ● ●

Example

- As desired, the step response is unity after 3 seconds.
- It is, however, important to realize that the response is correct only at the sampling instants and the response can have an oscillatory behavior between samples.

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Digital Control

Example

• We realize that the magnitude of the control signal is very large at the beginning (≈ 11).

Example

• We realize that the magnitude of the control signal is very large at the beginning (\approx 11).

The main drawback of dead-beat control is that it requires excessive (large) control efforts which may not be acceptable in practice.

Digital Control

• Dahlin¹ controller is a **modification of the deadbeat controller** which produces an exponential response that is smoother than deadbeat response.

¹Eric Dahlin worked for IBM in San Jose then for Measurex in Cupertino.

- Dahlin¹ controller is a **modification of the deadbeat controller** which produces an exponential response that is smoother than deadbeat response.
- The desired closed-loop response for step input looks like:

¹Eric Dahlin worked for IBM in San Jose then for Measurex in Cupertino.

• Hence, the desired closed-loop transfer function is:

$$G_{cl}(s) = rac{e^{-Ls}}{ au s + 1}$$

э

・ロト ・得ト ・ヨト ・ヨト

• Hence, the desired closed-loop transfer function is:

$$G_{cl}(s) = \frac{e^{-Ls}}{\tau s + 1}$$

• As step input is assumed (which is constant between samples), the desired closed-loop transfer function in the z-domain will be:

$$T(z) = \mathscr{Z} \{ G_{zoh}(s) \; G_{cl}(s) \} = \mathscr{Z} \left\{ rac{1-e^{-Ts}}{s} rac{e^{-Ls}}{ au s+1}
ight\}$$

A D > A P > A

Example

Example

The open-loop transfer function of a plant is given by:

$$G(s)=rac{e^{-2s}}{10s+1}$$

Design a Dahlin digital controller for the system to achieve a closed-loop time constant of 5 s. Assume that T = 1 s.

イロト イポト イヨト イヨ

Example

• First, we need to find the z-transform of the process (preceded by a ZOH). From the previous example, this is found to be:

 $GH(z) = \frac{0.095}{z^3 - 0.904z^2}$

3

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Example

• First, we need to find the z-transform of the process (preceded by a ZOH). From the previous example, this is found to be:

$$GH(z) = \frac{0.095}{z^3 - 0.904z^2}$$

• Second, we need to find the z-transform of the desired closed-loop transfer function, T(z).

イロト 不得下 イヨト イヨト

Example

• First, we need to find the z-transform of the process (preceded by a ZOH). From the previous example, this is found to be:

$$GH(z) = rac{0.095}{z^3 - 0.904 z^2}$$

- Second, we need to find the z-transform of the desired closed-loop transfer function, T(z).
- As the desired closed-loop time constant, τ , is 5 sec,

$$T(s) = rac{e^{-Ls}}{5s+1}$$

Example

• Therefore,

$$T(z) = \mathscr{Z}\left\{\frac{1-e^{-sT}}{s}\frac{e^{-Ls}}{5s+1}\right\}$$

= $(1-z^{-1})z^{-L/T}\mathscr{Z}\left\{\frac{1}{s(5s+1)}\right\}$
= $(1-z^{-1})z^{-k}\mathscr{Z}\left\{\frac{0.2}{s(s+0.2)}\right\}$
= $(1-z^{-1})z^{-k}\frac{z(1-e^{-0.2T})}{(z-1)(z-e^{-0.2T})}$
= $z^{-k}\frac{(0.181)}{(z-0.819)}$

3

イロト イポト イヨト イヨト

Example

• Therefore,

$$T(z) = \mathscr{Z}\left\{\frac{1 - e^{-sT}}{s} \frac{e^{-Ls}}{5s + 1}\right\}$$
$$= (1 - z^{-1})z^{-L/T} \mathscr{Z}\left\{\frac{1}{s(5s + 1)}\right\}$$
$$= (1 - z^{-1})z^{-k} \mathscr{Z}\left\{\frac{0.2}{s(s + 0.2)}\right\}$$
$$= (1 - z^{-1})z^{-k} \frac{z(1 - e^{-0.2T})}{(z - 1)(z - e^{-0.2T})}$$
$$= z^{-k} \frac{(0.181)}{(z - 0.819)}$$

• The Dahlin controller is thus given by:

$$D(z) = \frac{1}{G(z)} \frac{T(z)}{1 - T(z)}$$

= $\frac{z^3 - 0.904z^2}{0.095} \frac{z^{-k} \frac{(0.181)}{(z - 0.819)}}{\left(1 - z^{-k} \frac{(0.181)}{(z - 0.819)}\right)}$
= $\frac{z^3 - 0.904z^2}{0.095} \frac{0.181z^{-k}}{z - 0.819 - 0.181z^{-k}}$
= $\frac{0.181z^{3-k} - 0.164z^{2-k}}{0.095z - 0.078 - 0.017z^{-k}}.$

・ロト ・得ト ・ヨト ・ヨト

э

Example

• For the controller to be **realizable**: degree of numerator must be \leq degree of denominator

$$3-k\leq 1 \quad \Rightarrow \quad k\geq 2$$

э

・ロト ・得ト ・ヨト ・ヨト

Example

• For the controller to be **realizable**: degree of numerator must be \leq degree of denominator

$$3-k\leq 1 \quad \Rightarrow \quad k\geq 2$$

• Choosing k = 2, the controller is, then, given by:

$$D(z) = \frac{0.181z - 0.164}{0.095z - 0.078 - 0.017z^{-2}} = \frac{0.181z^3 - 0.164z^2}{0.095z^3 - 0.078z^2 - 0.017}$$

イロト イポト イヨト イヨト

Example

• For the controller to be realizable: degree of numerator must be \leq degree of denominator

$$3-k\leq 1 \quad \Rightarrow \quad k\geq 2$$

• Choosing k = 2, the controller is, then, given by:

$$D(z) = \frac{0.181z - 0.164}{0.095z - 0.078 - 0.017z^{-2}} = \frac{0.181z^3 - 0.164z^2}{0.095z^3 - 0.078z^2 - 0.017}$$

• Using the designed controller, the closed-loop step response and control signal are simulated next.

イロト イポト イヨト イヨト

MATLAB code for Example

1

2

3

4

5

6

7 8

9

12 13

14

15 16

17

10

```
Gp = tf(1, [10 \ 1], 'iodelay', 2);
Gpd = c2d(Gp, 1);
Gc = tf([0.181 - 0.164 \ 0 \ 0], [0.095 - 0.078 \ 0 - 0.017], 1);
Gcl=Gc*Gpd/(1+Gc*Gpd);
t = 0:1:30;
y=step(Gcl,t);
figure; plot(t,y,'o',t,y)
xlabel('time, t'), ylabel('output, y')
axis([0 30 0 1.2])
title('Step response')
Gru=Gc/(1+Gc*Gpd);
u=step(Gru,t)
figure; plot(t,u, 'o'); hold on; stairs(t,u); hold off;
xlabel('time, sec'), ylabel('control signal, u')
axis([0 30 0 5])
title('Control signal')
```

э

(日) (同) (日) (日)

Example step response

• the response is exponential as designed but slower than deadbeat control.

Example step response

• the response is exponential as designed but slower than deadbeat control.

• What is the time delay? time constant?

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Digital Control

Image: A math a math

Example step response

• the maximum control signal magnitude (\approx 1.9) is much smaller than the control signal obtained using a deadbeat controller (\approx 11). This is more acceptable in practice.

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

ヘロト ヘ戸ト ヘヨト ヘヨ

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.