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Lecture: 6

Sampling and Aliasing

Describe mathematically the impulse sampling process.

Recognize the frequency spectrum of a sampled signal.

Identify aliasing phenomena.

ideally recovering a continuous time signal from its sampled version

Identify the disadvantages of ideal signal reconstruction.

Describe ZOH as a simpler and effective reconstruction operation.

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Digital Control 2 / 24



Introduction

S

A digital or sampled-data control system operates on discrete-time rather than

continuous-time signals.

Due to the sampling process, some new phenomena appear which need careful

investigation. This is discussed next.
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The sampling process

A sampler is basically a switch that closes every T seconds.

Where q is the amount of time the switch is closed

In practice, q ≪ T ,

the pulses can be approximated by flat-topped rectangles.

If q is neglected, the operation is called ideal sampling

r(t)

T

ADC

r∗(t)

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Digital Control 4 / 24



Ideal sampling

Ideal sampling of a continuous signal can be considered as a multiplication of the signal,

r(t), with an impulse train P(t)

an impulse train P(t) is defined as:

P(t) =

∞
∑

−∞

δ(t − nT)

Thus, the sampled signal r∗(t) is:

r∗(t) = P(t) r(t) = r(t)

∞
∑

−∞

δ(t − nT) =

∞
∑

−∞

r(nT) δ(t − nT)

t t t

r(t)

0    T    2T    3T  4T   5T 0    T    2T    3T  4T   5T

* =

δ t − kT( )
k=0

∞

∑
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Sampling of continuous time signals

After sampling a continuous time signal r(t), with sampling period T,

◮ we get a sequence of samples r(kT).

The question now is: Do we loose anything by sampling?

◮ Or is it possible to recover r(t) from r(kT)?

It seems that very little is lost if the sampling period T is small or the sampling frequency

ωs = 2π/T is high.

The question is how small (high) is enough?

To answer this question we better study the frequency spectrum of the sampled signal r∗(t).

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Digital Control 6 / 24



Frequency spectrum of sampled signals

Mathematically, a sampled signal r∗(t) of the continuous r(t) is given as:

r∗(t) = P(t) r(t) = r(t)

∞
∑

−∞

δ(t − k T)

We will assume that the frequency spectrum of r(t) is R(ω) and it is band limited to [−ω, ω].

r(t) ⇔ R(ω)

The Fourier transform of the impulse train is also an impulse train scaled by 1/T where

ωs = 2π/T.
∞
∑

k=−∞

δ(t − T) ⇔
1

T

∞
∑

k=−∞

δ(ω − k ωs)
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Frequency spectrum of sampled signals

Frequency spectrum of r∗(t) is the result of multiplying r(t) by impulse train:

r∗(t) = r(t)

∞
∑

k=−∞

δ(t − k T)

multiplication in time is convolution in frequency ⇔ R(ω) ∗
1

T

∞
∑

k=−∞

δ(ω − k ωs)

convolution of sum is sum of convolutions ⇔
1

T

∞
∑

k=−∞

R(ω) ∗ δ(ω − k ωs)

convolution is integral ⇔
1

T

∞
∑

k=−∞

∞
∫

τ=−∞

R(τ) δ(ω − τ − k ωs)

apply shifting property of δ function ⇔
1

T

∞
∑

k=−∞

R(ω − k ωs)
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Frequency spectrum of sampled signals

This is an important result:

r∗(t) ⇔
1

T

∞
∑

k=−∞

R(ω − k ωs)

it indicates that two things happen to the frequency spectrum of r(t) when sampled to r∗(t):

1 Themagnitude of the sampled spectrum is scaled by 1/T of the continuous spectrum,

2 The summation indicates that there are an infinite number of repeated spectra in the

sampled signal, and they are repeated every ωs = 2π/T along the frequency axis:

fa = ±k fs ± fo Hz
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Frequency spectrum of sampled signals
Example I

Example

Consider a continuous function r1(t) which has no frequency content above half the sampling

frequency ωs/2. Show the original amplitude |R1(jω)| and sampled |R∗
1(jω)| spectra.

R1( jω) T R1
* ( jω)

1
2ωs− 1

2ωs − 3
2ωs

3
2ωs

1
2ωs− 1

2ωs
0 0 ωs−ωs 2ωs

ω ω

The spectrum of r∗(t) is scaled by 1/T and repeated (non-overlapping),

it is possible to reconstruct r(t) by extracting the original single spectrum from the array

of repeated spectra (Remember that all information present in r(t) is also present in original

spectrum R(jω).
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Frequency spectrum of sampled signals
Example II

Example

Now consider r2(t)which has frequency content above half the sampling frequency ωs/2. Show

the original amplitude |R2(jω)| and sampled |R∗
2(jω)| spectra.

1
2ωs− 1

2ωs − 3
2ωs

3
2ωs

1
2ωs− 1

2ωs
0 0 ωs−ωs 2ωs

ω ω

R2( jω) T R2
*( jω)

false spectrum
due to addition
of overlapping

spectra

ωo

ωa

The same scaling and repetition occurs in the sampled spectrum, but this time due to the

addition of the overlapping spectra there is no chance of recovering the original

spectrum after sampling.
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Meaning of a repeated spectrum
Example

Example

Consider a signal of frequency 100 Hz, sampled at a rate of fs = 500 Hz. What are the

frequencies that appear at the sampled signal? Can the original signal be reconstructed from its

sampled version? Why?

The signal with fo = 100 sampled at fs = 500 will show up at frequencies:

fa = ±k fs ± fo Hz

100 Hz, 400 Hz, 600 Hz, 900 Hz, 1100 Hz, · · ·

This means that any sinusoid signal of these frequencies can pass through the samples.

The reconstruction of the continuous time signal from discrete samples as we will see later

uses some form of low-pass filtering.

Therefore, in our case, the LPF filter will pass the 100 Hz component, which is the original

signal (so, no problem).
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Aliasing Effect

Example

Consider a signal of frequency 350 Hz, sampled at a rate of fs = 500 Hz. What are the

frequencies that appear at the sampled signal? Can the original signal be reconstructed from its

sampled version? Why?

The signal with fo = 100 sampled at fs = 500 will show up at frequencies:

fa = ±k fs ± fo Hz

1150 Hz, 350 Hz, 650 Hz, 850 Hz, 1350 Hz, · · ·

In this case, the LPF filter will pass the 150Hz component, which is not the original signal of

350 Hz (a problem called aliasing).

Aliasing Effect

The impersonation of high-frequency continuous sinusoids by low-frequency discrete sinusoids,

due to an insufficient number of samples in a cycle (the sampling interval is not short enough).
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Meaning of a repeated spectrum

The following two sinusoids have identical samples, and we cannot distinguish between

them from their samples:

0 1 2 3 4 5 6 7 8

time [sec]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

signal with fo=7/8 Hz

sampling @ fs= 1 Hz

Aliased signal with f= 1/8 Hz

Note that the frequency of the two sinusoids are 7/8 Hz, 1/8 Hz and sampling frequency

fs = 1 Hz (try to deduce these from the plot). Do you realize any pattern?
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Aliasing Effect

Wagon-wheel effect, https://www.youtube.com/watch?v=jHS9JGkEOmA

A good description: Aliasing and Nyquist - Introduction & Examples,

https://www.youtube.com/watch?v=v7qjeUFxVwQ
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Aliasing Effect
Effect on images

Scientific Volume Imaging,https://svi.nl/wikiimg/StFargeaux_kasteel_buiten1_aliased.jpg
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Solving the Aliasing Problem

First, sample at least twice the largest frequency in the signal of interest.

If the signal of interest contains noise (unwanted signal usually of high frequency),

◮ it is essential that an anti-aliasing analog filter be used, before sampling, to filter out those

frequencies above one-half the sampling frequency (called the Nyquist frequency).

◮ Otherwise, those unwanted frequencies will erroneously appear as lower frequencies after

sampling.
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The Sampling Theorem

Sampling Theorem

A continuous time signal with a Fourier transform that is zero outside the interval (−ω0, ω0), i.e.

band-limited, can be recovered uniquely by its values in equi-distant points if the sampling

frequency is higher than 2ω0 (no aliasing)

the signal is given by:

r(t) =

∞
∑

k=−∞

r(kT) sinc
π(t − kT)

T

This equivalent to passing R∗(jω) through an ideal low pass filter

L(jω), with magnitude:

|L(jω)| =

{

T, −π
T
≤ ω ≤ π

T

0, ω > π
T

The filter passes the original spectrum while rejecting higher

frequency components

1

t2 40-2-4

L( jω)

R
*
( jω)

R( jω)

⇒−π
T

π
T

π
T

−π
T

T

ω

ω
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Comments on Sampling Theorem

The reconstruction equation

r(t) =
∞
∑

k=−∞

r(kT) sinc
π(t − kT)

T

shows how to reconstruct function r(t)

(band-limited,no aliasing!) from its samples r∗(t).

1

4π 8π0-4π-8π ω = n ω
0

T = 1

ω0 = 2π

sinc() function fills in the gaps between samples.

However, from ideal LPF impulse response: l(t) = sincπt
T

Since this is the response due to an impulse applied at t = 0, the ideal reconstruction filter

is non-causal, because its response begins before it receives the input. This means we can

not apply the filter in real time.
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Comments on Sampling Theorem

The interpolated signal is a sum of shifted sincs, weighted by the samples r(kT).

The sinc function h(t) = sincπ t/T shifted to kT, i.e.

h(t − kT) =

{

1 at kT

0 at mT,m 6= k

The sum of the weighted shifted sincs will agree

with all samples r(kT).
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Zero-Order Hold as a Reconstruction Filter

Ideal LPF filter, being non-causal, cannot be used in real time, and furthermore it is

too complicated.

So we will examine the behavior of a zero-order hold as a way to reconstruct continuous

signal from discrete samples.

The ZOH remembers the last information until a new

sample is obtained, i.e. it takes the value r(kT) and

holds it constant for kT ≤ t < (k + 1)T.

r(t) = r(kT), kT ≤ t < (k + 1)T

This is exactly the behavior of a DAC in converting a

sampled signal r∗(t) into continuous r(t).
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ZOH and Sampling Period

A sampler and ZOH can accurately follow the input signal if the sampling time T is small

compared to the transient changes in the signal.
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Frequency Response of ZOH

From the shown impulse response of ZOH, its transfer function is:

GZOH(s) =
1

s
−

e−Ts

s
=

1− e−Ts

s

The frequency behavior of GZOH(s) is GZOH(jω),

GZOH(jω) =
1− e−jω T

jω

Multiplying numerator and denominator by ejω T/2 , we get:

GZOH(s) =
ejω T/2 − e−jω T/2

jω ejω T/2
= 2

ejω T/2 − e−jω T/2

2 jω ejω T/2
= T

sin(ω T/2)

ejω T/2 (ω T/2)

= e−jω T/2 T sinc
ω T

2
=

∣

∣

∣

∣

T sinc
ω T

2

∣

∣

∣

∣

−(ω T/2)
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Frequency Response of ZOH

The ZOH is a low-pass filter, at least an approximation of the ideal reconstructing

filter, and has linear phase lag with frequency.

This phase lag can be viewed as the destabilizing

effect of information loss at low sampling

frequencies.

The DC magnitude of T of the ZOH compensates for

the frequency scaling of 1/T incurred by sampling.

ω

ω
ωs =

2π
T

2ωs

Ho

∠ Ho

0

−180°

T
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Thanks for your attention.

Questions?
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