

Asst. Prof. Dr.Ing. **Mohammed Ahmed** mnahmed@eng.zu.edu.eg <goo.gl/GHZZio>

Lecture 6: **[Sampling and Aliasing](#page-0-0)**

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons](https://creativecommons.org/licenses/by-nc-sa/4.0/) [Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 6 **[Sampling and Aliasing](#page-0-0)**

- **•** Describe mathematically the impulse sampling process.
- Recognize the frequency spectrum of a sampled signal.
- **•** Identify aliasing phenomena.
- **•** ideally recovering a continuous time signal from its sampled version
- **•** Identify the disadvantages of ideal signal reconstruction.
- Describe ZOH as a simpler and effective reconstruction operation.

Introduction

- A digital or sampled-data control system operates on discrete-time rather than continuous-time signals.
- **Due to the sampling process, some new phenomena appear** which need careful investigation. This is discussed next.

The sampling process

- A sampler is basically a **switch** that closes every T seconds.
- Where q is the amount of **time the switch is closed**
- \bullet In practice, $q \ll T$.
- **the pulses can be approximated by flat-topped** rectangles.
- **If q is neglected, the operation is called ideal sampling**

Ideal sampling

- Ideal sampling of a continuous signal can be considered as a multiplication of the signal, $r(t)$, with an impulse train $P(t)$
- \bullet an impulse train $P(t)$ is defined as:

$$
P(t)=\sum_{-\infty}^{\infty}\delta(t-nT)
$$

Thus, the sampled signal $r^*(t)$ is:

$$
r^*(t) = P(t) r(t) = r(t) \sum_{-\infty}^{\infty} \delta(t - nT) = \sum_{-\infty}^{\infty} r(nT) \delta(t - nT)
$$

Sampling of continuous time signals

- \bullet After sampling a continuous time signal $r(t)$, with sampling period T,
	- \triangleright we get a sequence of samples $r(kT)$.
- The question now is: **Do we loose anything by sampling?**
	- ► Or is it possible to recover $r(t)$ from $r(k)$?
- It seems that very little is lost if the sampling period T is small or the sampling frequency $\omega_{s} = 2\pi/T$ is high.

The question is how small (high) is enough?

To answer this question we better study the frequency spectrum of the sampled signal $r^*(t)$.

Mathematically, a sampled signal $r^*(t)$ of the continuous $r(t)$ is given as:

$$
r^*(t) = P(t) r(t) = r(t) \sum_{-\infty}^{\infty} \delta(t - kT)
$$

 \bullet We will assume that the frequency spectrum of r(t) is R(ω) and it is **band limited** to $[-\omega, \omega]$.

$$
r(t) \Leftrightarrow R(\omega)
$$

 \bullet The Fourier transform of the impulse train is also an impulse train scaled by $1/T$ where $\omega_{\rm s}=2\pi/T$.

$$
\sum_{k=-\infty}^{\infty} \delta(t-T) \Leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k \omega_s)
$$

Frequency spectrum of $r^*(t)$ is the result of multiplying $r(t)$ by impulse train:

$$
r^*(t) = r(t) \sum_{k=-\infty}^{\infty} \delta(t - kT)
$$
\nmultiplication in time is convolution in frequency $\Leftrightarrow R(\omega) * \frac{1}{T} \sum_{k=-\infty}^{\infty} \delta(\omega - k\omega_s)$
\nconvolution of sum is sum of convolutions $\Leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} R(\omega) * \delta(\omega - k\omega_s)$
\nconvolution is integral $\Leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} \int_{-\tau=-\infty}^{\infty} R(\tau) \delta(\omega - \tau - k\omega_s)$
\napply shifting property of δ function $\Leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} R(\omega - k\omega_s)$

This is an important result:

$$
r^*(t) \Leftrightarrow \frac{1}{T} \sum_{k=-\infty}^{\infty} R(\omega - k \omega_s)
$$

it indicates that **two things** happen to the frequency spectrum of $r(t)$ when sampled to $r^*(t)$:

- The **magnitude** of the sampled spectrum is **scaled** by $1/T$ of the continuous spectrum,
- ² The summation indicates that there are an **infinite number of repeated spectra** in the sampled signal, and they are repeated every $\omega_s = 2\pi/T$ along the frequency axis:

$$
f_a = \pm k \, f_s \pm f_o \, \, \text{Hz}
$$

Example I

Example

Consider a continuous function $r_1(t)$ which has no frequency content above half the sampling frequency $\omega_{\sf s}/2.$ Show the original amplitude $|R_{1}(j\omega)|$ and sampled $|R_{1}^{*}(j\omega)|$ spectra.

- The spectrum of $r^*(t)$ is scaled by $1/T$ and repeated (**non-overlapping**),
- \bullet it is **possible to reconstruct** $r(t)$ by extracting the original single spectrum from the array of repeated spectra (Remember that all information present in $r(t)$ is also present in original spectrum $R(i\omega)$.

Example II

Example

Now consider $r_2(t)$ which has frequency content above half the sampling frequency $\omega_s/2$. Show the original amplitude $|R_2(j\omega)|$ and sampled $|R_2^*(j\omega)|$ spectra.

• The same scaling and repetition occurs in the sampled spectrum, but this time due to the addition of the **overlapping** spectra there is **no chance of recovering** the original spectrum after sampling.

Meaning of a repeated spectrum

Example

Example

Consider a signal of frequency 100 Hz, sampled at a rate of $f_s = 500$ Hz. What are the frequencies that appear at the sampled signal? Can the original signal be reconstructed from its sampled version? Why?

• The signal with $f_0 = 100$ sampled at $f_5 = 500$ will show up at frequencies:

$$
f_a = \pm k\, f_s \pm f_o\ \mathsf{Hz}
$$

100 Hz, 400 Hz, 600 Hz, 900 Hz, 1100 Hz, · · ·

- This means that any sinusoid signal of these frequencies can pass through the samples.
- **•** The reconstruction of the continuous time signal from discrete samples as we will see later uses some form of low-pass filtering.
- Therefore, in our case, the LPF filter will pass the 100 Hz component, which is the original signal (so, no problem).

Aliasing Effect

Example

Consider a signal of frequency 350 Hz, sampled at a rate of $f_s = 500$ Hz. What are the frequencies that appear at the sampled signal? Can the original signal be reconstructed from its sampled version? Why?

• The signal with $f_0 = 100$ sampled at $f_5 = 500$ will show up at frequencies:

 $f_a = \pm k f_s \pm f_o$ Hz

1150 Hz, 350 Hz, 650 Hz, 850 Hz, 1350 Hz, · · ·

In this case, the LPF filter will pass the 150Hz component, which is not the original signal of 350 Hz (a problem called **aliasing**).

Aliasing Effect

The impersonation of high-frequency continuous sinusoids by low-frequency discrete sinusoids, due to an insufficient number of samples in a cycle (the sampling interval is not short enough).

Meaning of a repeated spectrum

The following two sinusoids have identical samples, and we cannot distinguish between them from their samples:

• Note that the frequency of the two sinusoids are 7/8 Hz, 1/8 Hz and sampling frequency $f_s = 1$ Hz (try to deduce these from the plot). Do you realize any pattern?

Aliasing Effect

Wagon-wheel effect, <https://www.youtube.com/watch?v=jHS9JGkEOmA>

A good description: Aliasing and Nyquist - Introduction & Examples,

https://www.youtube.com/watch?v=v7qjeUFxVM.nO
Mohammed Ahmed (Asst. Prof. Dr.Ing.) [Digital Control](#page-0-0) 15 / 24
Digital Control 15 / 24

Aliasing Effect

Effect on images

Scientific Volume Imaging,https://svi.nl/wikiimg/StFargeaux_kasteel_buiten1_aliased.jpg

Solving the Aliasing Problem

- First, **sample at least twice the largest frequency in the signal** of interest.
- If the signal of interest contains noise (unwanted signal usually of high frequency),
	- ► it is essential that an **anti-aliasing analog filter** be used, before sampling, to filter out those frequencies above one-half the sampling frequency (called the **Nyquist frequency**).
	- \triangleright Otherwise, those unwanted frequencies will erroneously appear as lower frequencies after sampling.

The Sampling Theorem

Sampling Theorem

A continuous time signal with a Fourier transform that is zero outside the interval $(-\omega_0, \omega_0)$, i.e. **band-limited**, can be recovered uniquely by its values in equi-distant points if the sampling frequency is higher than $2\omega_0$ (**no aliasing**)

 \bullet the signal is given by:

frequency components

$$
r(t) = \sum_{k=-\infty}^{\infty} r(kT) \operatorname{sinc} \frac{\pi(t - kT)}{T}
$$

This equivalent to passing R ∗ (jω) through an **ideal low pass filter** $L(j\omega)$, with magnitude:

$$
|L(j\omega)| = \begin{cases} T, & -\frac{\pi}{T} \leq \omega \leq \frac{\pi}{T} \\ 0, & \omega > \frac{\pi}{T} \end{cases}
$$

The filter passes the original spectrum while rejecting higher \bullet

-4 -2 0 2 4 *L*(*j*ω) *R* (*j*ω) *R*(*j*ω) − \bar{r} ↓ *T* ω

1

Mohammed Ahmed (Asst. Prof. Dr.Ing.) [Digital Control](#page-0-0) 18 / 24

ω

Comments on Sampling Theorem

• The reconstruction equation

$$
r(t) = \sum_{k=-\infty}^{\infty} r(kT) \operatorname{sinc} \frac{\pi(t - kT)}{T}
$$

- shows how to reconstruct function $r(t)$ (band-limited,no aliasing!) from its samples $r^*(t)$.
- **o** sinc() function fills in the gaps between samples.
- However, from ideal LPF impulse response: $l(t) = sinc\frac{\pi t}{\overline{t}}$
- \bullet Since this is the response due to an impulse applied at $t = 0$, the **ideal** reconstruction filter is **non-causal**, because its response begins before it receives the input. This means we can not apply the filter in real time.

Comments on Sampling Theorem

 \bullet The interpolated signal is a **sum of shifted** sincs, **weighted** by the samples $r(kT)$.

• The sinc function $h(t) = \sin(\pi t)T$ shifted to kT , i.e.

$$
h(t - kT) = \begin{cases} 1 & \text{at } kT \\ 0 & \text{at } mT, m \neq k \end{cases}
$$

• The sum of the weighted shifted sincs will agree with all samples $r(kT)$.

Zero-Order Hold as a Reconstruction Filter

- **Ideal LPF filter**, being non-causal, **cannot be used in real time**, and furthermore it is too complicated.
- So we will examine the behavior of a zero-order hold as a way to reconstruct continuous signal from discrete samples.
- The ZOH remembers the last information until a new sample is obtained, i.e. it takes the value $r(kT)$ and holds it constant for $kT < t < (k + 1)T$.

 $r(t) = r(kT), \quad kT \le t \le (k+1)T$

This is exactly the behavior of a DAC in converting a sampled signal $r^*(t)$ into continuous $r(t)$.

ZOH and Sampling Period

 \bullet A sampler and ZOH can accurately follow the input signal if the sampling time T is small compared to the transient changes in the signal.

Frequency Response of ZOH

• From the shown impulse response of ZOH, its transfer function is:

$$
G_{ZOH}(s) = \frac{1}{s} - \frac{e^{-Ts}}{s} = \frac{1 - e^{-Ts}}{s}
$$

• The frequency behavior of $G_{ZOH}(s)$ is $G_{ZOH}(i\omega)$,

$$
G_{ZOH}(j\omega)=\frac{1-e^{-j\omega\,T}}{j\omega}
$$

Multiplying numerator and denominator by $e^{j\omega T/2}$, we get:

$$
G_{ZOH}(s) = \frac{e^{j\omega T/2} - e^{-j\omega T/2}}{j\omega e^{j\omega T/2}} = 2 \frac{e^{j\omega T/2} - e^{-j\omega T/2}}{2j\omega e^{j\omega T/2}} = T \frac{\sin(\omega T/2)}{e^{j\omega T/2} (\omega T/2)}
$$

$$
= e^{-j\omega T/2} T \operatorname{sinc} \frac{\omega T}{2} = \left| T \operatorname{sinc} \frac{\omega T}{2} \right| / - (\omega T/2)
$$

• The ZOH is a low-pass filter, at least an **approximation of the ideal reconstructing filter**, and has linear phase lag with frequency.

- **•** This phase lag can be viewed as the destabilizing effect of information loss at low sampling frequencies.
- The DC magnitude of T of the ZOH compensates for the frequency scaling of $1/T$ incurred by sampling.

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. **Mohammed Ahmed** mnahmed@eng.zu.edu.eg

<goo.gl/GHZZio> and the control of the Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under [a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.](https://creativecommons.org/licenses/by-nc-sa/4.0/)