

Assoc. Prof. Dr.Ing.

Mohammed Ahmed

mnahmed@eng.zu.edu.eg goo.gl/GHZZio

Lecture 5: **Step response and pole locations**

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of N_{max} the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department

Review

• Definition of z-transform:
$$
U(z) = \mathcal{Z}{u_k} = \sum_{k=0}^{\infty} u_k z^{-k}
$$

- Discrete transfer function: $\frac{Y(z)}{I(z)}$ $U(z)$ $G=(z)\equiv \mathcal{Z}\{g_k\},\quad g_k={\mathsf{pulse}}$ response
- Construct a discrete model of a continuous sampled-data system $G(s)$...

... by computing the pulse response g_k and transforming to get $G(z)$:

$$
G(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{G(s)}{s}\right\}
$$

Output response: $Y(z) = G(z)U(z) \iff y_k = g_k * u_k$

Review

Analyse/design a discrete controller $D(z)$:

by considering the purely discrete time system:

Closed loop system tranfer function: $\frac{Y(z)}{P(z)}$ $R(z)$ = $G(z)D(z)$ $1 + G(z)D(z)$

How do the closed loop poles relate to \rightarrow stability?

 \rightarrow performance?

Consider the z-transform of a sinusoid multiplied by a an exponential signal:

$$
y(t) = e^{-at} \cos(bt)U(t)
$$
 ($U(t)$ = unit step)
\n
$$
\star \text{ sample:} \quad y(kT) = r^k \cos(k\theta)U(kT)
$$
 with $r = e^{-aT} \& \theta = bT$
\n
$$
\star \text{ transform:} \quad Y(z) = \frac{1}{2} \frac{z}{(z - re^{j\theta})} + \frac{1}{2} \frac{z}{(z - re^{-j\theta})}
$$

\n
$$
= \frac{z(z - r \cos \theta)}{(z - re^{j\theta})(z - re^{-j\theta})}
$$

\n
$$
\star \text{ e.g. } y_k \text{ is the pulse response of } G(z):
$$

\n
$$
G(z) = \frac{z(z - r \cos \theta)}{(z - re^{j\theta})(z - re^{-j\theta})}
$$

\npoles:
$$
\begin{cases} z = re^{j\theta} \\ z = re^{-j\theta} \end{cases}
$$

\n
$$
\text{poles:} \quad \begin{cases} z = 0 \\ z = r \cos \theta \end{cases}
$$

\n
$$
\text{zeros:} \quad \begin{cases} z = 0 \\ z = r \cos \theta \end{cases}
$$

Some special cases:

 \triangleright for $\theta = 0$, $Y(z)$ simplifies to:

$$
Y(z) = \frac{z}{z - r}
$$

 \implies exponentially decaying response

$$
\triangleright \quad \text{when } \theta = 0 \text{ and } r = 1:
$$

$$
Y(z) = \frac{z}{z-1}
$$

 \implies unit step

 \triangleright when $r = 0$:

$$
Y(z) = 1
$$

$$
\implies \text{unit pulse}
$$

$$
\triangleright \quad \text{when } \theta = 0 \text{ and } -1 < r < 0:
$$

samples of alternating signs

Pole positions in the z-plane

- Poles inside the unit circle are stable
- **Poles outside the unit circle** are unstable
- Poles on the unit circle are oscillatory
- Real poles at $0 < z < 1$ give exponential response
- Higher frequency of oscillation for larger θ
- **•** Lower apparent damping for larger θ and r

Relationship with s-plane poles

If $F(s)$ has a pole at $s = a$ then $F(z)$ has a pole at $z = e^{aT}$ ↑ consistent with $z = e^{sT}$ What about transfer functions? $G(z) = (1 - z^{-1})\mathcal{Z}$ $\int G(s)$ s $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ ↓ If $G(s)$ has poles $s = a_i$ then $G(z)$ has poles $z=e^{a_iT}$ but the zeros are unrelated $\mathcal{F}(s)$ $f(kT)$ $F(z)$ 1 s $1(kT)$ z $z - 1$ 1 s 2 kT Tz $(z-1)^2$ 1 $s + a$ e^{-akT} $\frac{z}{\cdots}$ $\frac{z}{z - e^{-aT}}$ 1 $\frac{1}{(s+a)^2}$ kTe^{-akT} $\frac{Tze^{-aT}}{(z-e^{-aT})^2}$ $\frac{a}{s(s+a)}$ 1 – e^{-akT} $\frac{z(1-e^{-aT})}{(z-1)(z-e^{-aT})}$ $(z-1)(z-e^{-aT})$ $b-1$ $\frac{b-1}{(s+a)(s+b)}\,e^{-akT}-e^{-bkT}\,\frac{(e^{-aT}-e^{-bT})z}{(z-e^{-aT})(z-e^{-bT})}$ $(z - e^{-aT})(z - e^{-bT})$ a $\frac{a}{s^2 + a^2}$ sin akT $\frac{z \sin aT}{z^2 - (2\cos aT)}$ $\sqrt{z^2-(2\cos aT)z+1}$ b $\frac{b}{(s+a)^2+b^2}$ $e^{-akT}\sin bkT$ $\frac{ze^{-aT}\sin bT}{z^2-2e^{-aT}(\cos bT)z}$ $\sqrt{z^2 - 2e^{-aT}(\cos bT)z + e^{-2aT}}$

Locus of $s = \sigma + j\omega$ under the mapping $z = e^{sT}$:

- \star imaginary axis $(s = j\omega, \sigma = 0) \longrightarrow$ unit circle $(|z| = 1)$
- \star left-half plane $(\sigma < 0) \longrightarrow$ inside of unit circle $(|z| < 1)$
- \star right-half plane $(\sigma > 0) \longrightarrow$ outside of unit circle $(|z| > 1)$
- \star region of s-plane within the Nyquist rate $(|\omega| < \pi/T) \longrightarrow$ entire z-plane

Second order step responses (e.g. see HLT)

Design criteria based on step response:

- \star Damping ratio ζ in range $0.5 0.9$ [application-dependent]
- \star Natural frequency ω_0 as large as possible [for fastest response]

Typical specifications for the step response:

- \star Rise time (10% \rightarrow 90%):
- \star Peak overshoot:
- \star Settling time (to 1%):
- \star Steady state error to unit step: e_{ss}
- \star Phase margin: $\phi_{PM} \approx 100\zeta$

$$
t_r \approx 1.8/\omega_0
$$

\n
$$
M_p \approx e^{-\pi\zeta/\sqrt{1-\zeta^2}}
$$

\n
$$
t_s = 4.6/(\zeta\omega_0)
$$

Typical specifications for the step response:

Example – A continuous system with transfer function $G(s) = \frac{1}{(10^{-5})^2}$ $\sqrt{s(10s+1)}$ is controlled by a discrete control system with a ZOH

The closed loop system is required to have:

- step response overshoot: $M_p < 16\%$
- step response settling time (1%) : $t_s < 10$ s
- steady state error to unit ramp: $e_{ss} < 1$

Check these specifications if $T = 1$ s and the controller is

$$
u_k = -0.5u_{k-1} + 13(e_k - 0.88e_{k-1})
$$

1. (a) Find the pulse transfer function of $G(s)$ plus the ZOH

e.g. look up $\mathcal{Z}\{a/s^2(s+a)\}$ in tables:

$$
G(z) = \frac{(z-1)}{z} \frac{z((0.1 - 1 + e^{-0.1})z + (1 - e^{-0.1} - 0.1e^{-0.1}))}{0.1(z-1)^2(z - e^{-0.1})}
$$

$$
= \frac{0.0484(z + 0.9672)}{(z-1)(z - 0.9048)}
$$

(b) Find the controller transfer function (using $z =$ shift operator):

$$
\frac{U(z)}{E(z)} = D(z) = 13 \frac{(1 - 0.88z^{-1})}{(1 + 0.5z^{-1})} = 13 \frac{(z - 0.88)}{(z + 0.5)}
$$

4 - 18

2. Check the steady state error e_{ss} when $r_k =$ unit ramp

$$
e_{ss} = \lim_{k \to \infty} e_k = \lim_{z \to 1} (z - 1)E(z)
$$

3. Step response: overshoot
$$
M_p < 16\% \implies \zeta > 0.5
$$

\nsetting time $t_s < 10 \implies |z| < 0.01^{1/10} = 0.63$

The closed loop poles are the roots of $1 + D(z)G(z) = 0$, i.e.

$$
1 + 13 \frac{(z - 0.88)}{(z + 0.5)} \frac{0.0484(z + 0.9672)}{(z - 1)(z - 0.9048)} = 0
$$

$$
\implies z = 0.88, -0.050 \pm j0.304
$$

But the pole at $z = 0.88$ is cancelled by controller zero at $z = 0.88$, and

Fast sampling revisited

For small T :

$$
z = e^{sT} = 1 + sT + (sT)^{2}/2 + \dots \approx 1 + sT \quad \Longrightarrow \quad s \approx \frac{z - 1}{T}
$$

Hence the image of the unit circle under the map from z to s-plane becomes

but the dominant poles lie near $z = 1$...

... so the discrete response tends to the continuous response as $T \to 0$

Summary

- **•** Dependence of system pulse response on pole locations
- For a sampled data system with a ZOH:

if $s=a_i$ is a pole of $G(s)$, then $z=e^{a_iT}$ is a pole of $G(z)$

- Locus of $s=\sigma+j\omega$ under the mapping $z=e^{sT}$:
	- \star the left half plane (σ < 0) maps to the unit disk ($|z|$ < 1)
	- \star s-plane poles with damping ratio ζ , natural frequency ω_0 map to z-plane poles with:

$$
|z| = e^{-\zeta \omega_0 T}
$$

$$
\arg(z) = \sqrt{1 - \zeta^2} \,\omega_0 T
$$

Design specifications (rise time, settling time, overshoot) imply constraints on locations of dominant poles