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Review

@ Definition of z-transform: U(z) = Z{ur} = Zukz_k
k=0

. ) Y
@ Discrete transfer function: (2) = G(z) = Z{gr}, gr = pulse response

U(z)

@ Construct a discrete model of a continuous sampled-data system G(s) ...

_______________________________________

... by computing the pulse response g and transforming to get G(z):

G(z)=(1- Z—l)z{ G(s) }

S

@ Output response: Y (z2) = G(2)U(z) <= yr = gk * Uk



Review

Analyse/design a discrete controller D(z):
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€k Uy DAC | u(?) (o) sample iyk‘
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by considering the purely discrete time system:

e u
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+
Y(z) _ _G(2)D(z)

Closed loop system tranfer function:

How do the closed loop poles relate to

— stability?

R(z)  1+G(z)D(2)

— performance?



Response of 2nd order system
Consider the z-transform of a sinusoid multiplied by a an exponential signal:
y(t) = e~ cos(bt) U(t) (U(t) = unit step)
x sample:  y(kT) = r* cos(k0) U(KT) with r = e 7 & 0 = bT
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* transform: Y (z) =

Im(2)A
* e.g. Yk is the pulse response of G(z): .
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Response of 2nd order system

Responses for varying r: ] ,
r=0.7
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Response of 2nd order system

Responses for varying 6:
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Response of 2nd order system

Some special cases:

> for 6 =0, Y(z) simplifies to:
2

Y(z2) =

Z—7T

—> exponentially decaying response

> whenf@=0andr=1:

= unit step

> when r =0:

— unit pulse

> whenf=0and -1 <r <O0:

samples of alternating signs



Pole positions in the z-plane

@ Poles inside the unit circle
are stable

@ Poles outside the unit circle @

are unstable

@ Poles on the unit circle

-
are oscillatory V‘E
/

@ Real polesat 0 < z < 1
give exponential response

/—1
@ Higher frequency of
oscillation for larger 0
@ Lower apparent damping 2\ f |
for larger 6 and r
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Relationship with s-plane poles

If F'(s) has a pole at s =a

then F'(z) has a pole at z = T

T

consistent with z = ¢°7

What about transfer functions?
G(z)=(1—- z_l)Z{&S)}
S
i
If G(s) has poles s = a;

then G(z) has poles z = %™

but the zeros are unrelated
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The mapping from s-plane to z-plane

Locus of s = o + jw under the mapping z = e*”:

* imaginary axis (s = jw, 0 = 0) — unit circle (|z] = 1)
* left-half plane (o < 0) — inside of unit circle (|z| < 1)
* right-half plane (o > 0) — outside of unit circle (|z| > 1)

* region of s-plane within the Nyquist rate (Jw| < 7/T) — entire z-plane

s-plane z-plane
Im(s)?} Im(z)f
w=mx/T
5 = esT
> > >
Re(s) T e(z)
w=—x/T
\ w=+n/T




The mapping from s-plane to z-plane

s-plane
A Im(s)
5 — T
77N
/ >
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§ =0+ jw
o = constant
A Im(s)
z=eT
7N
/ >
/ 0 Re(s)
§ =0+ jw

w = constant

| zZ=¢€
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The mapping from s-plane to z-plane

Pole locations for constant damping ratio ( < 1

Alm(s)
5% 4+ (wos + wj =0 tW1=Cwo
Y 0
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The mapping from s-plane to z-plane

Im axis
wo = 0.5m/T
| N4 B
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31 /\ =37
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T = sampling period




The mapping from s-plane to z-plane




System specifications

2

1 =0
1.8F P S S\ o
- ,02 :

16k S

Second order step responses (e.g. see HLT)

8
w,t
Design criteria based on step response:

12

* Damping ratio ¢ in range 0.5 - 0.9

* Natural frequency wo as large as possible

[application-dependent]

[for fastest response]



System specifications

Typical specifications for the step response:

b . I . o

\4

v

Rise time (10% — 90%):

Peak overshoot:

Settling time (to 1%):

Steady state error to unit step:

Phase margin:

i, =~ 1.8/w0

M, ~ e ™¢/V 1-¢2
ts = 4.6/(Cwo)

eSS
gbpM ~ 100C



System specifications

Typical specifications for the step response:

v

tr, M, — (,wo —— locations of dominant poles
ts — radius of poles: |z| < 0.017/t

€ss —  final value theorem: ess = lirri(z —1)E(z)
z—



System specifications

Example — A continuous system with transfer function

1
G(s) = ———
(5) s(10s + 1)
is controlled by a discrete control system with a ZOH

The closed loop system is required to have:
— step response overshoot: M, < 16%
— step response settling time (1%): ts < 10s

— steady state error to unit ramp: egs < 1

Check these specifications if 7' = 1s and the controller is

up = —0.5uk_1 + 13(ex, — 0.88e_1)



System specifications

1. (a) Find the pulse transfer function of G(s) plus the ZOH

Tk ey ue: | pac | u(®) V() [sample| 1V
¥ D) 1 +hold Gls) +ADC ||
- ] GG |

6 = - 2{E0) = B2 5 )

\/

e.g. look up Z{a/s*(s + a)} in tables:

(z—1) Z((O.l e Ol p (1 e 0t - 0.16—0.1))
< 0.1(z — 1)2(z — e—0-1)

_0.0484(z 4 0.9672)

~ (2= 1)(z — 0.9048)

G(z) =

(b) Find the controller transfer function (using z = shift operator):

U(z) ., (1—0882""  (2—0.88)
)~ PO =B a0 ~ B GTos




System specifications

2. Check the steady state error ess when rx = unit ramp

ess = lim ey = lim(z — 1)E(2)
k—o0 z—1

R E U Y Ez) _ 1
ﬁ)?—y D(z) G(2) » R(z) 14 D(2)G(2)
- Tz
R(z) = 1)

_ Tz 1 . T
SO ess = ll—%{(z —-1) (z—1)2 1+ D(2)G(z) } = lim (z —1)D(2)G(2)

. T
= lim (- 1) 0.0484(z + 0.9672) D)
(z — 1)(z — 0.9048)

B 1 —0.9048 — 0.96
©0.0484(140.9672)D(1)

Output y and reference r

= ess <1 (as required)

0 5 10
_19 Time (sec)



System specifications

3. Step response: overshoot M, < 16% = ( > 0.5
settling time t, < 10 = |z| < 0.01'/'° = 0.63

The closed loop poles are the roots of 1 + D(2)G(z) =0, i.e.

(2 — 0.88) 0.0484(z + 0.9672)
1+1 —
T 05y o 1)z —0.90a8) °

—> z = 0.88, —0.050 = 50.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and

r=031, 0=1.73

z=—0.050 £ j0.304 = re™?’ — {
¢ =0.56

=)
5
2 0-5/
£
‘8 01 m
©
>
5 -0.5
8 - .
8 -t { all specs satisfied!
_15 i i i i i i i i i
o 1 =2 3 4 5 6 7 8 9 10

Time (sec)



Fast sampling revisited

For small T

z=eT =14sT+ (sT)°/24+ -~ 1+sT —

Hence the image of the unit circle under the map from z to s-plane becomes

Im(z — 1)

A
\_/

Re(z — 1)

but the dominant poles lie near z = 1. ..

Im[(z —Al)/T]

Re[(z — 1)/1]

z-plane loci of
constant ¢ & wo

~ s-plane loci
near z =1

...so the discrete response tends to the continuous response as T — 0



Summary

@ Dependence of system pulse response on pole locations

@ For a sampled data system with a ZOH:

T

if s =a, is a pole of G(s), then z = e*** is a pole of G(z)

@ Locus of s = o + jw under the mapping z = e*7:

* the left half plane (o < 0) maps to the unit disk (|z| < 1)

* s-plane poles with damping ratio (, natural frequency woy map to
z-plane poles with:

2] = e

arg(z) = /1 — CwoT

@ Design specifications (rise time, settling time, overshoot)
imply constraints on locations of dominant poles



