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Review

Definition of z-transform: U(z) = Z{uk} =

∞
X

k=0

ukz
−k

Discrete transfer function:
Y (z)

U(z)
= G(z) = Z{gk}, gk = pulse response

Construct a discrete model of a continuous sampled-data system G(s) . . .

. . . by computing the pulse response gk and transforming to get G(z):

G(z) = (1− z−1)Z

⇢

G(s)

s

�

Output response: Y (z) = G(z)U(z) ⇐⇒ yk = gk ∗ uk
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Review

Analyse/design a discrete controller D(z):

by considering the purely discrete time system:

Closed loop system tranfer function:
Y (z)

R(z)
=

G(z)D(z)

1 +G(z)D(z)

How do the closed loop poles relate to → stability?

→ performance?
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Response of 2nd order system

Consider the z-transform of a sinusoid multiplied by a an exponential signal:

y(t) = e−at cos(bt)U(t) (U(t) = unit step)

? sample: y(kT ) = rk cos(k✓)U(kT ) with r = e−aT & ✓ = bT

? transform: Y (z) =
1

2

z

(z − rejθ)
+

1

2

z

(z − re−jθ)

=
z(z − r cos ✓)

(z − rejθ)(z − re−jθ)

? e.g. yk is the pulse response of G(z):

G(z) =
z(z − r cos ✓)

(z − rejθ)(z − re−jθ)

poles:
n z = rejθ

z = re−jθ

zeros:
n z = 0

z = r cos ✓

4 - 4



Response of 2nd order system

Responses for varying r:

. r < 1

⇓
exponentially decaying
envelope

. r = 1

⇓
sinusoidal response
with 2⇡/✓ samples

per period

. r > 1

⇓
exponentially increasing
envelope
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Response of 2nd order system

Responses for varying ✓:

. ✓ = 0

⇓
decaying exponential

. ✓ = ⇡/2

⇓
2⇡/✓ = 4 samples

per period

. ✓ = ⇡

⇓
2 samples per period
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Response of 2nd order system

Some special cases:

. for ✓ = 0, Y (z) simplifies to:

Y (z) =
z

z − r

=⇒ exponentially decaying response

. when ✓ = 0 and r = 1:

Y (z) =
z

z − 1
=⇒ unit step

. when r = 0:

Y (z) = 1

=⇒ unit pulse

. when ✓ = 0 and −1 < r < 0:

samples of alternating signs
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Pole positions in the z-plane

Poles inside the unit circle
are stable

Poles outside the unit circle
are unstable

Poles on the unit circle
are oscillatory

Real poles at 0 < z < 1
give exponential response

Higher frequency of
oscillation for larger ✓

Lower apparent damping
for larger ✓ and r

Re(z)

Im(z)
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Relationship with s-plane poles

If F (s) has a pole at s = a

then F (z) has a pole at z = eaT

↑

consistent with z = esT

What about transfer functions?

G(z) = (1− z−1)Z

⇢

G(s)

s

�

↓

If G(s) has poles s = ai

then G(z) has poles z = eaiT

but the zeros are unrelated

F(s) f(kT ) F (z)

1

s
1(kT )

z

z − 1

1

s2
kT

Tz

(z − 1)2

1

s + a
e−akT

z

z − e−aT

1

(s + a)2
kTe−akT

Tze−aT

(z − e−aT )2

a

s(s + a)
1 − e−akT

z(1 − e−aT )

(z − 1)(z − e−aT )

b − 1

(s + a)(s + b)
e−akT

−e−bkT
(e−aT

− e−bT )z

(z − e−aT )(z − e−bT )

a

s2 + a2
sin akT

z sin aT

z2
− (2 cos aT )z + 1

b

(s + a)2+ b2
e−akT sin bkT

ze−aT sin bT

z2
− 2e−aT(cos bT )z + e−2aT
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The mapping from s-plane to z-plane

Locus of s = � + j! under the mapping z = esT :

? imaginary axis (s = j!, � = 0) −→ unit circle (|z| = 1)

? left-half plane (� < 0) −→ inside of unit circle (|z| < 1)

? right-half plane (� > 0) −→ outside of unit circle (|z| > 1)

? region of s-plane within the Nyquist rate (|!| < ⇡/T ) −→ entire z-plane

s-plane z-plane

Re(s)

Im(s) Im(z)

Re(z)

! = ⇡/T
��✓

! = −⇡/T

@@R
! = ±⇡/T

6

z = esT
-
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The mapping from s-plane to z-plane

s-plane z-plane
Im(s)

Re(s)

Im(z)

Re(z)
s = � + j!

� = constant

�
��

z = esT

z = eσT ejωT

|z| = eσT = constant

@
@I

Im(s)

Re(s)

Im(z)

Re(z)

z = esT

s = � + j!

! = constant

�
��

z = eσT ejωT

arg(z) = !T constant
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The mapping from s-plane to z-plane

Pole locations for constant damping ratio ⇣ < 1

s2 + ⇣!0s+ !2

0 = 0

⇓

s = −⇣!0 ± j
p

1− ⇣2 !0

✓

Im(s)

Re(s)

p

1− ⇣2 !0

−⇣!0

cos ✓ = ⇣

Im(s)

Re(s)

Im(z)

Re(z)

z = esT

s = −⇣!0 + j
p

1− ⇣2 !0: ⇣ = constant

⇣ = 0.7

⇣ = 0.5

⇣ = 0.7

⇣ = 0.5

⇣ = 0.7
@
@I

⇣ = 0.5
�� 

z = e−ζω0T e−j
√

1−ζ2ω0T
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The mapping from s-plane to z-plane

⇣ = 0.2

�
�
��↵

⇣ = 0.5

�
�
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!0 = 0.3⇡/T���⇡

!0 = 0.5⇡/T
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The mapping from s-plane to z-plane
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System specifications

Second order step responses (e.g. see HLT)

Design criteria based on step response:

? Damping ratio ⇣ in range 0.5 – 0.9 [application-dependent]

? Natural frequency !0 as large as possible [for fastest response]
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System specifications

Typical specifications for the step response:

? Rise time (10% → 90%): tr ≈ 1.8/!0

? Peak overshoot: Mp ≈ e−πζ/
√

1−ζ2

? Settling time (to 1%): ts = 4.6/(⇣!0)

? Steady state error to unit step: ess

? Phase margin: �PM ≈ 100⇣
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System specifications

Typical specifications for the step response:

tr, Mp −→ ⇣, !0 −→ locations of dominant poles

ts −→ radius of poles: |z| < 0.01T/ts

ess −→ final value theorem: ess = lim
z→1

(z − 1)E(z)
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System specifications

Example – A continuous system with transfer function

G(s) =
1

s(10s+ 1)
is controlled by a discrete control system with a ZOH

The closed loop system is required to have:

– step response overshoot: Mp < 16%

– step response settling time (1%): ts < 10 s

– steady state error to unit ramp: ess < 1

Check these specifications if T = 1 s and the controller is

uk = −0.5uk−1 + 13(ek − 0.88ek−1)
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System specifications

1. (a) Find the pulse transfer function of G(s) plus the ZOH

G(z) = (1− z−1)Z
nG(s)

s

o

=
(z − 1)

z
Z
n 0.1

s2(s+ 0.1)

o

e.g. look up Z{a/s2(s+ a)} in tables:

G(z) =
(z − 1)

z

z
⇣

(0.1− 1 + e−0.1)z + (1− e−0.1 − 0.1e−0.1)
⌘

0.1(z − 1)2(z − e−0.1)

=
0.0484(z + 0.9672)

(z − 1)(z − 0.9048)

(b) Find the controller transfer function (using z = shift operator):

U(z)

E(z)
= D(z) = 13

(1− 0.88z−1)

(1 + 0.5z−1)
= 13

(z − 0.88)

(z + 0.5)
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System specifications

2. Check the steady state error ess when rk = unit ramp

ess = lim
k→∞

ek = lim
z→1

(z − 1)E(z)

E(z)

R(z)
=

1

1 +D(z)G(z)

R(z) =
Tz

(z − 1)2

so ess = lim
z→1

n

(z − 1)
Tz

(z − 1)2
1

1 +D(z)G(z)

o

= lim
z→1

T

(z − 1)D(z)G(z)

= lim
z→1

T

(z − 1)
0.0484(z + 0.9672)

(z − 1)(z − 0.9048)
D(1)

=
1− 0.9048

0.0484(1 + 0.9672)D(1)
= 0.96

=⇒ ess < 1 (as required)
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System specifications

3. Step response: overshoot Mp < 16% =⇒ ⇣ > 0.5

settling time ts < 10 =⇒ |z| < 0.011/10 = 0.63

The closed loop poles are the roots of 1 +D(z)G(z) = 0, i.e.

1 + 13
(z − 0.88)

(z + 0.5)

0.0484(z + 0.9672)

(z − 1)(z − 0.9048)
= 0

=⇒ z = 0.88, −0.050± j0.304

But the pole at z = 0.88 is cancelled by controller zero at z = 0.88, and

z = −0.050± j0.304 = re±jθ =⇒
⇢

r = 0.31, ✓ = 1.73

⇣ = 0.56
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Fast sampling revisited

For small T :

z = esT = 1 + sT + (sT )2/2 + · · · ≈ 1 + sT =⇒ s ≈ z − 1

T

Hence the image of the unit circle under the map from z to s-plane becomes

Re(z − 1)

Im(z − 1) Im
⇥

(z − 1)/T
⇤

Re
⇥

(z − 1)/T
⇤

z-plane loci of
constant ⇣ & !0

≈ s-plane loci
near z = 1

but the dominant poles lie near z = 1. . .

. . . so the discrete response tends to the continuous response as T → 0
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Summary

Dependence of system pulse response on pole locations

For a sampled data system with a ZOH:

if s = ai is a pole of G(s), then z = eaiT is a pole of G(z)

Locus of s = � + j! under the mapping z = esT :

? the left half plane (� < 0) maps to the unit disk (|z| < 1)

? s-plane poles with damping ratio ⇣, natural frequency !0 map to
z-plane poles with:

|z| = e−ζω0T

arg(z) =
p

1− ⇣2 !0T

Design specifications (rise time, settling time, overshoot)
imply constraints on locations of dominant poles

4 - 22


