

Digital Control

Assoc. Prof. Dr.Ing.

Mohammed Ahmed mnahmed@eng.zu.edu.eg

goo.gl/GHZZio

Lecture 4: The z-Transform

18.10.2016

Copyright © 2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Zagazig University | Faculty of Engineering | Computer and Systems Dept.

Lecture 4

The z-Transform

- Conversion between Laplace and z-Transforms
- Some of the properties of the z-transform are:
 - ► Linearity and Time Shift
 - z-differentiation
 - ► Final value theorem
 - DC Gain of Transfer Function
- Inverse z-Transform

The z-transform

• to find X(z) from x(kT), the z-transform is defined as:

$$\mathscr{Z}\{x(kT)\} = \mathscr{Z}\{x_k\} = X(z)$$

$$= \sum_{k=0}^{\infty} x(kT)z^{-k} = \sum_{k=0}^{\infty} x_k z^{-k}$$

$$= x_0 + x_1 z^{-1} + x_2 z^{-2} + x_3 z^{-3} + \cdots$$

- Discrete transfer functions are defined using z^{-1} delay operator
- The transfer function of a system is the z-transform of its pulse response
- X(z) provides an easy way to convert between sequences, recurrence eqs and their closed-form solutions.

Tables of Laplace and z-Transforms, and z-Transform Properties

No.	Continuous Time	Laplace Transform	Discrete Time	z-Transform
1	δ(t)	1	$\delta(k)$	1
2	1(t)	$\frac{1}{s}$	1(k)	$\frac{z}{z-1}$
3	1	$\frac{1}{s^2}$	kT	$\frac{zT}{(z-1)^2}$ sampling t gives kT , $z\{kT\} = T$ $z\{k\}$
4	t ²	$\frac{2!}{s^3}$	$(kT)^2$	$\frac{z(z+1)T^2}{\left(z-1\right)^3}$
5	t ³	3! s4	$(kT)^3$	$\frac{z(z^2+4z+1)T^3}{(z-1)^4}$
6	$e^{-\alpha t}$	$\frac{1}{s + \alpha}$	a^k	$\frac{z}{z-a}$ by setting $a = e^{-\alpha T}$.
7	$1 - e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$1-a^k$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-\alpha t} - e^{-\beta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$
9	te ^{-at}	$\frac{1}{(s+\alpha)^2}$	kTak	$\frac{az T}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin(\omega_n kT)$	$\frac{\sin(\omega_n T)z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_s kT)$	$\frac{z[z - \cos(\omega_n T)]}{z^2 - 2\cos(\omega_n T)z + 1}$
12	$e^{-\zeta \omega_{\lambda} t} \sin(\omega_{d} t)$	$\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}$	$e^{-\zeta \omega_n kT} \sin(\omega_d kT)$	$\frac{e^{-\zeta \omega_{n}T}\sin(\omega_{d}T)z}{z^{2}-2e^{-\zeta \omega_{n}T}\cos(\omega_{d}T)z+e^{-2\zeta \omega_{n}T}}$
13	$e^{-\zeta \omega_{lt}t}\cos(\omega_{d}t)$	$\frac{s + \zeta \omega_n}{(s + \zeta \omega_n)^2 + \omega_d^2}$	$e^{-\zeta \omega_n kT} \cos(\omega_d kT)$	$\frac{z[z-e^{-\zeta\omega_bT}\mathrm{cos}(\omega_dT)]}{z^2-2e^{-\zeta\omega_bT}\mathrm{cos}(\omega_dT)z+e^{-2\zeta\omega_bT}}$
14	$sinh(\beta t)$	$\frac{\beta}{s^2 - \beta^2}$	$\sinh(\beta kT)$	$\frac{\sinh(\beta T)z}{z^2 - 2\cosh(\beta T)z + 1}$
15	$\cosh(\beta t)$	$\frac{s}{s^2 - \beta^2}$	$\cosh(\beta kT)$	$\frac{z[z - \cosh(\beta T)]}{z^2 - 2\cosh(\beta T)z + 1}$

No.	Property	Formula
1	Linearity	$\mathcal{Z}\{\alpha f_1(k) + \beta f_2(k)\} = \alpha F_1(z) + \beta F_2(z)$
2	Time Delay	$\mathcal{Z}\{f(k-n)\} = z^{-n}F(z)$
3	Time Advance	$\mathcal{Z}\{f(k+1)\} = zF(z) - zf(0)$ $\mathcal{Z}\{f(k+n)\} = z^n F(z) - z^n f(0) - z^{n-1} f(1) \cdots - zf(n-1)$
4	Discrete-Time Convolution	$\mathcal{Z}\{f_1(k)^*f_2(k)\} = \mathcal{Z}\left\{\sum_{i=0}^k f_1(i)f_2(k-i)\right\} = F_1(z)F_2(z)$
5	Multiplication by Exponential	$\mathcal{Z}\{a^{-k}f(k)\} = F(az)$
6	Complex Differentiation	$\mathcal{Z}\lbrace k^m f(k)\rbrace = \left(-z \frac{d}{dz}\right)^m F(z)$
7	Final Value Theorem	$f(\infty) = \mathcal{L}_{im} f(k) = \mathcal{L}_{im} (1 - z^{-1}) F(z) = \mathcal{L}_{im} (z - 1) F(z)$
8	Initial Value Theorem	$f(0) = \mathcal{L}_{im} f(k) = \mathcal{L}_{im} F(z)$ $z \to \infty$

Linearity and Time shift

- Linearity: $\mathscr{Z}\{\alpha f(k) \pm \beta g(k)\} = \alpha \mathscr{Z}\{f(k)\} \pm \beta \mathscr{Z}\{g(k)\}$
- Time Delay: $\mathscr{Z}\{f(k-n)\}=z^{-n}F(z)$
- Time Advance: $\mathscr{Z}\lbrace f(k+n)\rbrace = z^n F(z) + \sum_{i=0}^{n-1} f(i)z^{n-i}$

Example

Obtain closed form z-transform of the sequence: $\{0, 1, 2, 4, 0, 0, \cdots\}$ using the table of z-transforms, linearity and time delay properties.

• The sequence can be written in terms of transforms of standard functions:

$$\{0,1,2,4,0,0,\cdots\} = \{0,1,2,4,8,16,\cdots\} - \{0,0,0,0,8,16,\cdots\} = f(k) - g(k)$$
where $f(k) = \begin{cases} 2^{k-1} & k > 0, \\ 0 & k \le 0 \end{cases}$ $g(k) = \begin{cases} 8 \times 2^{k-4} & k > 4, \\ 0 & k \le 4 \end{cases}$

$$\mathscr{Z}\{0,1,2,4,0,0,\ldots\} = \mathbf{z}^{-1} \frac{\mathbf{z}}{\mathbf{z}-2} - \mathbf{z}^{-4} \frac{8\mathbf{z}}{\mathbf{z}-2} = \frac{\mathbf{z}^3 - 8}{\mathbf{z}^3(\mathbf{z}-2)}$$

Complex Differentiation

• Multiplication by k: $\mathscr{Z}\{k^m f(k)\} = \left(-z \frac{d}{dz}\right)^m F(z)$

Example

if
$$F(z) = \mathscr{Z}\{f(n)\} = \mathscr{Z}\{2^n\} = \frac{z}{z-2}$$
, use the complex differentiation property to find $G(z)$ for $g(k) = n2^n$

$$f(n) = 2^n \Leftrightarrow F(z) = \frac{z}{z - 2}$$
$$g(n) = n2^n$$
$$G(z) = -z \frac{d}{dz} F(z) = \frac{2z}{(z - 2)^2}.$$

Final Value Theorem

- final value of the time response: $f(\infty) = \lim_{n \to \infty} f(n) = \lim_{z \to 1} (1 z^{-1}) F(z)$
- this theorem is valid only if the system is stable (poles of F(z) inside or on the unit circle i.e. the system reaches a final value).

Example

Find the final value of g(n), if
$$G(z) = \frac{0.792z}{(z-1)(z^2-0.416z+0.208)}$$
,

• Using the final value theorem.

$$g_{\infty} = \lim_{n \to \infty} g(n) = \lim_{z \to 1} (1 - z^{-1}) G(z)$$

$$= \lim_{z \to 1} (1 - z^{-1}) \frac{0.792z}{(z - 1)(z^2 - 0.416z + 0.208)},$$

$$= \lim_{z \to 1} \frac{0.792}{(z^2 - 0.416z + 0.208)} = 1.$$

DC Gain of Transfer Function

- For the transfer function $H(z) = \frac{Y(z)}{U(z)}$ is $\frac{y_{\infty}}{u_{\infty}} = H(1)$
- Let input u(k) be a step of magnitude u_{∞} , with z-transform

$$U(z)=\frac{u_{\infty}\,z}{z-1}$$

• The output is given by:

$$Y(z) = H(z) U(z) = H(z) \frac{u_{\infty} z}{z - 1}$$

• The final value of the output y(k) can be found using the final value theorem:

$$y_{\infty} = \lim_{k \to \infty} y_k = \lim_{z \to 1} (1 - z^{-1}) Y(z) = \lim_{z \to 1} (1 - z^{-1}) H(z) \frac{u_{\infty} z}{z - 1} = u_{\infty} H(1)$$

• Hence the DC gain of the transfer function H(z) is:

$$\frac{y_{\infty}}{u_{\infty}} = H(1)$$

 Again, note that when finding the DC gain of a transfer function, all poles of the transfer function must be inside the unit circle.

DC Gain of Transfer Function

Example

Consider the transfer function given by

$$H(z) = \frac{Y(z)}{U(z)} = \frac{z+1}{z^2 - 0.5z + 0.5} = \frac{z+1}{(z - 0.25 + j0.66)(z - 0.25 - j0.66)}$$

- first, it is necessary to check system stability
 - ▶ The poles are $z_{1,2} = 0.25 \pm j0.66$ then $|z_{1,2}| = 0.7058 < 1$ which means the system is stable.
- The DC gain is given by

$$H(1) = \frac{1+1}{1-0.5+0.5} = 2$$

- Thus if this discrete system were given an input that eventually reached a constant value, the
 output would eventually reach twice that value.
- If the denominator polynomial above were $z^2 0.5z + 2$,
 - ▶ the DC gain would evaluate to H(1) = 0.8,
- but that is **meaningless since the system is unstable** (the roots are outside the unit circle).

Given a function G(s), find G(z) which denotes the z-transform equivalent of G(s).

- It is important to realize that G(z) is not obtained by simply substituting z for s in G(s)!
- ullet Method 1: inverse Laplace transform then apply z-transform to the time function.
- Method 2: using Laplace to z-transform table
- Method 3: approximation

Method 1

Example

Given
$$G(s) = \frac{1}{s^2 + 5s + 6}$$
, determine $G(z)$.

Using partial fraction

$$G(s) = \frac{1}{s^2 + 5s + 6} = \frac{1}{(s+2)(s+3)} = \frac{1}{s+2} - \frac{1}{s+3}$$

Inverse Laplace transform

$$g(t) = \mathcal{L}^{-1}\{G(s)\} = e^{-2t} - e^{-3t}$$

• Substitute t = kT gives:

$$g(kT) = e^{-2kT} - e^{-3kT}$$

Finally,

$$G(z) = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}} = \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}$$

Method 2

• From conversion table:

Laplace Transform	z-transform
1	Z
$\overline{s+a}$	$\overline{z-e^{-aT}}$

So,

$$G(s) = \frac{1}{s^2 + 5s + 6} = \frac{1}{(s+2)(s+3)} = \frac{1}{s+2} - \frac{1}{s+3}$$

$$G(z) = \frac{z}{z - e^{-2T}} - \frac{z}{z - e^{-3T}}$$

$$= \frac{z(e^{-2T} - e^{-3T})}{(z - e^{-2T})(z - e^{-3T})}$$

Method 3

• one of following approximation rules can be used:

Euler forward:
$$s \approx \frac{z-1}{T}$$
 Euler backward: $s \approx \frac{z-1}{zT}$ Tustin: $s \approx \frac{2}{T} \frac{z-1}{z+1}$

- Forward (explicit) Euler approach is numerically not efficient (very small T required).
- Especially the **Tustin** transformation is often used in practice.
- However, even this approach has its limitations and the discrete-time closed-loop system
 performance is only comparable to the continuous-time performance if the sampling intervals are
 sufficiently small.
- More precisely, as long as the cross-over frequency ω_c and the sampling time T satisfy the inequality

$$T<rac{\pi}{5\omega_c}$$

MATLAB

MATLAB c2d command can be used to convert a continuous system into discrete.

Example

write a MATLAB commands to convert $G(s) = \frac{1}{s^2 + 5s + 6}$ into discrete with a sample period T = 1.

- Given the z-transform, Y(z), of a function, it is required to find the time-domain function y(n).
- There are **two** methods: power series (long division) and partial fractions.

- power series: long division.
 - ▶ This method involves dividing the denominator of Y(z) into the numerator to obtain a a power series of the form:

$$Y(z) = y_0 + y_1 z^{-1} + y_2 z^{-2} + y_3 z^{-3} + \cdots$$

 \triangleright values of y(n) are, directly, the coefficients in the power series.

partial fractions:

 \triangleright a partial fraction expansion of Y(z) is found, and then tables of z-transform can be used to determine the inverse z-transform.

Method 1: Power Series (long division)

Example

use power series method to find the inverse z-transform for:

$$Y(z) = \frac{z^2 + z}{z^2 - 3z + 4}$$

- Dividing the denominator into the numerator gives: ⇒
- from coefficients of power series:

$$y_k = \{1, 4, 8, 8, \cdots\}$$

• The required sequence:

$$y(t) = \delta(t) + 4\delta(t-T) + 8\delta(t-2T) + 8\delta(t-3T) + \cdots$$

$$\begin{array}{r}
1 + 4z^{-1} + 8z^{-2} + 8z^{-3} \\
2 - 3z + 4 \overline{\smash)z^2 + z} \\
\underline{z^2 - 3z + 4} \\
4z - 4 \\
\underline{4z - 12 + 16z^{-1}} \\
8 - 16z^{-1} \\
\underline{8 - 24z^{-1} + 32z^{-2}} \\
8z^{-1} - 32z^{-2} \\
8z^{-1} - 24z^{-2} + 32z^{-3}
\end{array}$$

Method 1: Power Series (long division)

• in MATLAB, you can use the following commands:

```
Delta = [1 zeros(1 , 4)];
num = [0 1 1];
den = [1 -3 4];
yk = filter(num, den, Delta)

>> yk =
0 1 4 8 8
```

• disadvantage of power series method: it does not give a closed form of the resulting sequence.

Method 2: Partial Fractions

- Looking at z-transform table, ⇒
- there is usually a z term in numerator.
- It is therefore more convenient to find the partial fractions of Y(z)/z
- then multiply the partial fractions by z to obtain a z term in the numerator.

No.	Continuous Time	Laplace Transform	Discrete Time	z-Transform
1	δ(t)	1	$\delta(k)$	1
2	1(t)	<u>1</u>	1(k)	$\frac{z}{z-1}$
3	t	$\frac{1}{s^2}$	kT	$\frac{zT}{(z-1)^2}$ sampling t gives $kT, z\{kT\} = T z\{k\}$
4	r²	$\frac{2!}{s^3}$	$(kT)^2$	$\frac{z(z+1)T^2}{(z-1)^3}$
5	t ³	$\frac{3!}{s^4}$	$(kT)^3$	$\frac{z(z^2+4z+1)T^3}{(z-1)^4}$
6	$e^{-\alpha t}$	$\frac{1}{s + \alpha}$	a^k	$\frac{z}{z-a}$ by setting $a = e^{-a^2}$
7	$1 - e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$1-a^k$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-\alpha t} - e^{-\beta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$
9	te ^{-at}	$\frac{1}{(s+\alpha)^2}$	kTa ^k	$\frac{azT}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin(\omega_n kT)$	$\frac{\sin(\omega_n T)z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_s kT)$	$\frac{z[z - \cos(\omega_n T)]}{z^2 - 2\cos(\omega_n T)z + 1}$
12	$e^{-\zeta \omega_k t} {\rm sin}(\omega_d t)$	$\frac{\omega_d}{(s + \zeta \omega_n)^2 + \omega_d^2}$	$e^{-\zeta\omega_nkT}{\rm sin}(\omega_dkT)$	$\frac{e^{-\zeta \omega_b T} \sin(\omega_d T) z}{z^2 - 2e^{-\zeta \omega_b T} \cos(\omega_d T) z + e^{-2\zeta \omega_b}}$
13	$e^{-\zeta \omega_n t} \cos(\omega_d t)$	$\frac{s + \zeta \omega_n}{(s + \zeta \omega_n)^2 + \omega_d^2}$	$e^{-\zeta \omega_a kT} \cos(\omega_d kT)$	$\frac{z[z - e^{-\zeta \omega_h T} \cos(\omega_d T)]}{z^2 - 2e^{-\zeta \omega_h T} \cos(\omega_d T)z + e^{-2\zeta \omega_h}}$
14	$sinh(\beta t)$	$\frac{\beta}{s^2 - \beta^2}$	$sinh(\beta kT)$	$\frac{\sinh(\beta T)z}{z^2 - 2\cosh(\beta T)z + 1}$
15	cosh(\beta()	s	cosh(BVT)	$z[z - \cosh(\beta T)]$

Method 2: Partial Fractions

Example

Find the inverse z-transform of

$$Y(z) = \frac{z^2 + 3z - 2}{(z+5)(z-0.8)(z-2)^2}$$

• Rewriting the function as:

$$\frac{Y(z)}{z} = \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)(z-2)^2}$$
$$= \frac{A}{z} + \frac{B}{z+5} + \frac{C}{z-0.8} + \frac{D}{(z-2)} + \frac{E}{(z-2)^2}$$

Method 2: Partial Fractions

$$A = z \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)(z-2)^2} \bigg|_{z=0} = 0.125,$$

$$B = (z+5) \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)(z-2)^2} \bigg|_{z=-5} = 0.0056,$$

$$C = (z-0.8) \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)(z-2)^2} \bigg|_{z=0.8} = 0.16,$$

$$E = (z-2)^2 \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)(z-2)^2} \bigg|_{z=2} = 0.48,$$

$$D = \left[\frac{d}{dz} \frac{z^2 + 3z - 2}{z(z+5)(z-0.8)} \right] \bigg|_{z=2}$$

$$= \frac{(2z+3)z(z+5)(z-0.8) - (z^2 + 3z - 2)(3z^2 + 8.4z - 4)}{[z(z+5)(z-0.8)]^2} = -0.29$$

Method 2: Partial Fractions

• We can now write Y(z) as:

$$Y(z) = 0.125 + \frac{0.0056z}{z+5} + \frac{0.016z}{z-0.8} - \frac{0.29z}{(z-2)} + \frac{0.48z}{(z-2)^2}$$

• The inverse transform is found from the tables as

$$y(n) = 0.125 \delta(n) + 0.0056 (-5)^n + 0.016 (0.8)^n - 0.29 (2)^n + 0.24 \frac{n}{2} (2)^n$$

• Note: for last term, we used the multiplication by *k* property which is equivalent to a z-differentiation.

Method 2: Partial Fractions

• in MATLAB, you can find the partial fraction expansion of a ratio of two polynomials F(z) with:

$$F(z) = \frac{2z^3 + z^2}{z^3 + z + 1}$$

- residue returns the complex roots and poles, and a constant term in k,
- representing the partial fraction expansion

$$F(z) = \frac{0.5354 + 1.0390i}{z - (0.3412 + 1.1615j)} + \frac{0.5354 - 1.0390i}{z - (0.3412 - 1.1615j)} + \frac{-0.0708}{z + 0.6823} + 2$$

```
num = [2 1 0 0]:
_{2} den = [1 \ 0 \ 1 \ 1]:
  [r,p,k] = residue(num,den)
    0.5354 + 1.0390i
    0.5354 - 1.0390i
    -0.0708 + 0.0000i
    0.3412 + 1.1615i
    0.3412 - 1.1615i
    -0.6823 + 0.0000i
    k =
16
```

Administrative Stuff

- tutorial feedback !
- Mini–Projects · · ·
 - ► Collision Avoidance Robot
 - Course examples using MATLAB (2x)
 - control lighting system according to the
 - number of people in the room
 - ▶ Remote controlled robot using Ardunio and bluetooth.
 - Digital Speed Control
 - ▶ Wireless Controlled Robot

Thanks for your attention.

Questions?

Assoc. Prof. Dr.Ing.

Mohammed Nour Abdelgwad Ahmed

mnahmed@eng.zu.edu.eg

goo.gl/yHTvze

Zagazig University Faculty of Engineering

Computer and Systems Engineering Department

Copyright ©2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved.

Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.