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Lecture 4

The z-Transform

@ Conversion between Laplace and z-Transforms
@ Some of the properties of the z-transform are:
Linearity and Time Shift

z-differentiation

Final value theorem

DC Gain of Transfer Function

vy vy VvVYy

@ Inverse z-Transform
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The z-transform

@ to find X(z) from x(kT), the z-transform is
defined as:

Z{x(kT)} = Z {4} = X(2)
= Zx(kT)z*k = Zxkz*k
k=0 k=0

=X+ x1z 7 4 X0z 4 X3273 + -

Sequence
{zo,x1,...}

Recurrence equation
Tk = Q1Tk—1 + *** + AnTh—n

@ Discrete transfer functions are defined using z~! delay operator

@ The transfer function of a system is the z-transform of its pulse response

@ X(z) provides an easy way to convert between sequences, recurrence eqs and their closed-form
solutions.
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Tables of Laplace and z-Transforms,

Continuous  Laplace
No.  Time Transform Discrete Time  z-Transform
1 R0) 1 8(k) 1
2 G} 1 1(k) Z
5 =1
3 ' ! KT _ sampling ¢ gives
s - KT, 2{kT} = T z{k}
4 7 2 (Gog nr?
5 H;
5 P 3 1 2 +az+ D)1
s @
o n
6 ¢ ! a by settinga = ¢~
s+a
7 - @ 1-d
S5+a)
8 e G-a a =
GFa)s+0)
9 e 1 k1a*
(s+a)
10 sin,) sin(w,kT) sinw, 1)z
2 = 2cos(w, Dz + 1
1" Cos(wl) cos(w,kT) T
12 e Csin(wyr) e M sin(wgkT) e sin(w, T)z
13 e rcos(wy) & cos(w kT)
14 sinh(3n) sinh(GkT) sinh(37)z
2 —2cosh(3T) + 1
15 cosh(dn cosh(BKT) sh(3T)]
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and z-Transform Properties

No. Property Formula
1 Linearity Z{afi(k) + Bf(k)) = aF\(z) + BF(z)
2 Time Delay Z{flk—n)}=z"F(z)
3 Time Advance Z{f(k+ 1)} =zF(z) — zf(0)
Z{flk+m} =2"F@) = 2f(O) =" f(1) -+ —2f(n = 1)

4 Discrete-Time

Convolution ZUARHE) =2 D [k —i) p = Fi@Fa2)

il

5 Multiplication by Zla *f(k)} = F(az)

Exponential
6 Complex o (pm _

Differentiation st (
7 Final Value Theorem flo)= Lo flky=Lim (1= VF(R) = Zin (2= DF()

— B |

8 Initial Value Theorem

Q)= Zinf (k) =Zim F(2)
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Properties of z-Transform
Linearity and Time shift

o Linearity: Z{af(k)xpg(k)} =aZ{f(k)}+5Z{g(k)}
o Time Delay: Z{f(k —n)} =z "F(z)
o Time Advance: Z{f(k+ n)} = z"F(z) + X1 f(i)z""

Example

Obtain closed form z-transform of the sequence: {0,1,2,4,0,0,---} using the table of z-transforms,
linearity and time delay properties.

@ The sequence can be written in terms of transforms of standard functions:

{0,1,2,4,0,0,---} ={0,1,2,4,8,16,--- } — {0,0,0,0,8,16,--- } = (k) — g(k)

2k-1 k>0 8x 2k k>4
where f(k) = U gk =4 -
0 k<0 0 k<4
8z -8
2{0,1,2,4,0,0,.} =z -2 _ =
{0.1,2,4,0,0,..} == z—2 ° z-2 z3(z - 2)
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Properties of z-Transform
Complex Differentiation

o Multiplication by k: Z{k™f(k)} = (—zZ)" F(z)
Example

if F(z) = 2Z{f(n)} = Z{2"} =
g(k)=n2"

z

5 use the complex differentiation property to find G(z) for
z p—

f(n) = 2" & F( ):zf2
g(n)=n2"
G(z) = —Z%F(z) =5 322)2
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Properties of z-Transform

Final Value Theorem

o final value of the time response: f(co) = lim f(n) = Iiml(l -z Y F(2)
n—oo zZ—

@ this theorem is valid only if the system is stable (poles of F(z) inside or on the unit circle i.e.
the system reaches a final value).
Example

0.792z
(z—1)(z2 — 0.416z + 0.208)’

Find the final value of g(n), if G(z) =

@ Using the final value theorem,

g = lim g(n) = lim(1 - z"1G(2)

n—o00 z—1
0.792z
=lim(1—z"!
fim(1 -2z )(z —1)(z2 — 0.416z + 0.208)’

i 0.792 B

21 (22 — 0416z + 0.208)
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Properties of z-Transform

DC Gain of Transfer Function

Y
@ For the transfer function H(z) = (2) is 2= = H(1)

U(z)

o Let input u(k) be a step of magnitude u.,, with z-transform
Uso Z
U =
(2) ==

The output is given by:
Uso Z

Y(z) = H(z) U(z) = H(z)z

-1
@ The final value of the output y(k) can be found using the final value theorem:
Voo = lim ye = lim(1 =z Y(z) = lim(1 - z7 1) H(z2) o2 _ usoH(1)
k— 00 z—1 z—1 z—1
@ Hence the DC gain of the transfer function H(z) is:
Yoo
— =H(1
" Q)

@ Again, note that when finding the DC gain of a transfer function, all poles of the transfer function
must be inside the unit circle.
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Properties of z-Transform

DC Gain of Transfer Function

Example

Consider the transfer function given by
H(z)—Y(z)— z+1 B z+1
~ U(z) z22-05z+05 (z—0.25+,0.66)(z — 0.25 — j0.66)

o first, it is necessary to check system stability
> The poles are z;, = 0.25 4 j0.66 then |z 2| = 0.7058 < 1 which means the system is stable.

@ The DC gain is given by
B 1+1 B
1-05+05
@ Thus if this discrete system were given an input that eventually reached a constant value, the
output would eventually reach twice that value.
o If the denominator polynomial above were 722 —-05z+2,
» the DC gain would evaluate to H(1) = 0.8,

@ but that is meaningless since the system is unstable (the roots are outside the unit circle).
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Conversion between Laplace and z-Transforms

Given a function G(s), find G(z) which denotes the z-transform equivalent of G(s). ]

It is important to realize that G(z) is not obtained by simply substituting z for s in G(s)!
Method 1: inverse Laplace transform then apply z-transform to the time function.

Method 2: using Laplace to z-transform table

Method 3: approximation
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Conversion between Laplace and z-Transforms
Method 1

Example

Given G(s) = ﬁ determine G(z).

@ Using partial fraction

G(s) 1 1 1 1

T 215516 (s+2)(s+3) Ts+2 s+3
@ Inverse Laplace transform
g(t)=27HG(s)} = e — e
o Substitute t = kT gives:
g(kT) —_ e—QkT _ e—3kT
o Finally,
—2T _ ¢=37)

G(z) = —= 2 ___z(e
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Conversion between Laplace and z-Transforms
Method 2

@ From conversion table:

Laplace Transform z-transform

1 z
s+a z—e 2T
e So,
1 1 1 1
G(S): > = = —_
s24+55+6 (s+2)(s+3) s+2 s+3
G(z) = z z

7 — e—2T 7 _ o—3T
z(efzr _ efar)
(Z _ e—2T)(Z _ e—3T)
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Conversion between Laplace and z-Transforms
Method 3

one of following approximation rules can be used:

-1 -1 2z—-1
Euler forward: s ~ % Euler backward: s ~ 2277_ Tustin: s = 7§+ 1

Forward (explicit) Euler approach is numerically not efficient (very small T required).

Especially the Tustin transformation is often used in practice.

However, even this approach has its limitations and the discrete-time closed-loop system
performance is only comparable to the continuous-time performance if the sampling intervals are
sufficiently small.

@ More precisely, as long as the cross-over frequency w. and the sampling time T satisfy the

inequality
T

T <
bw¢
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Conversion between Laplace and z-Transforms

MATLAB
MATLAB c2d command can be used to convert a continuous system into discrete. )
Example
write a MATLAB commands to convert G(s) = ——_-—— into discrete with a sample period T = 1.
52 +55+6 )
1 >> G = tf([1]1,[1 5 6]1); % continuous time transfer function
2 >> T = 1;
3 >> Gd = c2d(G,T, 'impulse') 7 discrete time transfer function
4
5 Gd =
6 0.08555 z - 8.162e-19
7 e __
8 z"2 - 0.1851 z + 0.006738
9
10 Sample time: 1 seconds
1 Discrete-time transfer function.
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Inverse z-Transform

Given the z-transform, Y'(z), of a function, it is required to find the time-domain function y(n).

There are two methods: power series (long division) and partial fractions.

@ power series: long division.

> This method involves dividing the denominator of Y(z) into the numerator to obtain a a power series

of the form:

3

Y(2)=yo+yiz "4z i 4ysz P4

» values of y(n) are, directly, the coefficients in the power series.

partial fractions:

> a partial fraction expansion of Y(z) is found, and then tables of z-transform can be used to determine
the inverse z-transform.
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Inverse z-Transform

Method 1: Power Series (long division)

Example
use power series method to find the inverse z-transform for:
Y(z) = 22 . ;
Z)= 5 a8 5 1+4z7' +8772 + 8z~
72 —3z+4 R - L O i S
¥ —=3z+4|z°+z
P2 -3z+4
o Dividing the denominator into the numerator gives: = Al
o from coefficients of power series: 47— 124 16z7!
8 — 167"
g1 )
v =1{1,4,8,8,--} 8 — 24771 +322
877! — 32772

@ The required sequence: 877! — 24772 4 32773

y(t)=0(t)+40(t—T)+86(t—2T)+85(t—3T)+---
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Inverse z-Transform
Method 1: Power Series (long division)

@ in MATLAB, you can use the following commands:

1 Delta = [1 zeros (1 ,
2 num = [0 1 1];
3 den = [1 -3 4];

4 yk = filter (num, den,
5

6 >> yk =

7 0 1 4 8

o disadvantage of power series method: it does not give a closed form of the resulting sequence.
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Inverse z-Transform
Method 2: Partial Fractions

@ Looking at z-transform table, =
@ there is usually a z term in numerator.

@ It is therefore more convenient to find the partial
fractions of Y(z)/z

@ then multiply the partial fractions by z to obtain a z term
in the numerator.
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Continuous  Laplace
No.  Time Transform Discrete Time  z-Transform
1 0 8(k) 1
2 1(1) 1 1) o
5 1
3 ' L i sampling ¢ gives
s KT, (KT} = Tz{k}
4 2 2 (Gon
5
5 ¢ 3 *n?*
o
= .
6 ¢ ! d by settinga = e~
sta —a
7 1—¢ @ 1-d (1-ax
st+a) @=Di=a)
8 e _B-a - (a=b)
(s+a)s+5) —a)z=b)
9 te 1 kTd*
(s+a)
10 sinw,t) sin(w,kT)
11 cos(wi) cos(w,kT)
12 e Ssin(wgr) & T gin(wgkT)
=
13 et eos(wat) e S cos(wgkT)
ar
14 sinh(3n) 8 sinh(3KT) sinh(3T)z
2= 22 —2cosh(AT)z+ 1
15 cosh(dn s cosh(GKT) <z — cosh(3T)]
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Inverse z-Transform
Method 2: Partial Fractions

Example

Find the inverse z-transform of

z224+3z-2

Y(Z) = 2
(z+5)(z—0.8)(z—2)
@ Rewriting the function as:
Y(z) z24+3z-2
z  z(z+5)(z—0.8)(z —2)
A B C D E

AT AT R e R
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Inverse z-Transform
Method 2: Partial Fractions

2
2
A= 7 z 43z S| =0.125,
z2(z+5)(z-08)(z—2)"|__,
2
—2
B=(z+5) z +3z S — 0.0056,
2(z+5)(z-0.8)(z—2)7|,_ |
2
2
C=(z-08) 13z . = 0.16,
2(z+5)(z—08)(z—2)"| _,4
2 _
E=(z—2) Z432-2 | _oag

z(z+5)(z—0.8)(z—2)
_|d 224322
- |dzz(z+5)(z - 0.8)}
~ (2z+3)z(z+5)(z—0.8) — (2> + 3z — 2)(32> + 8.4z — 4) 0.2
= 5 =—0.
[z(z 4+ 5)(z — 0.8)]
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Inverse z-Transform
Method 2: Partial Fractions

e We can now write Y(z) as:

0.0056z  0.016z 0.29z 0.48z

Y(z) = 0.12 _
(2) = 0125+ ===+ ¢ (z—2)+(z_2)2

@ The inverse transform is found from the tables as
y(n) = 0.12548(n) + 0.0056 (—5)" 4 0.016 (0.8)" — 0.29 (2)" 4 0.24 n (2)"

@ Note: for last term, we used the multiplication by k property which is equivalent to a
z-differentiation.
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Inverse z-Transform
Method 2: Partial Fractions

@ in MATLAB, you can find the partial fraction expansion of a ratio of two polynomials F(z) with:

F(z) =

273 4 72
2B4+z+1

@ residue returns the complex roots and poles, and a

constant term in Kk,

@ representing the partial fraction expansion

F(z) =

0.5354 + 1.0390/

z — (0.3412 + 1.1615))
0.5354 — 1.0390/

z — (0.3412 — 1.1615))
—0.0708

z40.6823

+2
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11

12

13

14

15

16

num = [2 1 0 0];

den = [1 0 1 1];

[r,p,k] = residue(num,den)
r =

0.5354 + 1.03901i
0.5354 - 1.03901
-0.0708 + 0.00001

p =
0.3412 + 1.16151
0.3412 - 1.16151
-0.6823 + 0.00001

k =
2
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Administrative Stuff

o tutorial feedback !

o Mini—Projects - - -

Collision Avoidance Robot

Course examples using MATLAB (2x)

control lighting system according to the

number of people in the room

Remote controlled robot using Ardunio and bluetooth.
Digital Speed Control

Wireless Controlled Robot

Yy Y VY VY VvV VY
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Thanks for your attention.

Questions?

Assoc. Prof. Dr.Ing.
Mohammed Nour Abdelgwad Ahmed

mnahmed@eng.zu.edu.eg

Zagazig University

goo.gl/yHTvze Faculty of Engineering

Computer and Systems Engineering Department
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