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Lecture 3

Linear Discrete Systems Analysis

@ Discrete Transfer Functions
@ The z-Transform
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Discrete Transfer Function

@ Compare the continuous system time domain model
du "u de dmu
t) = — <o —ap—— + b b — bym——
u(t)=—a1— i an i + boe + 1t + ot gim

differential equation

|l Laplace transform J}
D(s) = U(s)  bo+bis+ bps? 4 -+ bps™
- D(s) T 14215+ aps2+ -+ a,s”

@ with the discrete system model:

U = —ailg_1 —+++— aplk_n + boex + -+ + bnek_m

n m
= — E ajug—i + E bjex—j recurrence equation

o Can we define a transfer function for the discrete system?
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Discrete Transfer Function

Suppose L{ux = u(kT)} = U(s) ---

then how can we represent ug_1, ux_», etc.?

o If Z{x(t)} = X(s), then
L{x(t—T)} = e *TX(s), so

L{u} = U(s)

Lluk_1} = e =T U(s)
Lluk_o} = e T U(s)

Lluk_n} = e ™7 U(s)

Mohammed Ahmed (Assoc. Prof. Dr.Ing.)

o
Define the discrete frequency domain operator
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Z:esT

L{u} = U(2)
Llu 1y =zt U(2)
Lluay =z72U(z2)

Lluk—n} =2z7"U(2)
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Discrete Transfer Function

Comparison

@ system representations:
Continuous

Discrete
du de
”(t):_ala—"~+boe+b1a+“- Uk = —ajlg_1 — -+ boex + - - -
@ operators:

Continuous Discrete

d p—

l:>SU(S) u = z 1 U(2)

dt

differential delay

@ The operator z is used to denote a forward shift by one sampling interval, i.e., z- x(k) = x(k + 1).
@ The shift operator z is analogous to the Heavyside operator s (differentiation).

@ The analogy can be carried further, i.e., the backward shift operation is denoted by z~! with
z7t x(k) = x(k — 1).
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Discrete Transfer Function

@ Apply the transformation to the linear recurrence equation:
Ug = —ajlg—1 — alig—p — -+ — aplg—n + boex + brex—1 + -+ + bpex—m
| transform |}
U(z) = —a1z 1U(2) — apz 2U(2) — - - - — 3,2""U(2) + boE(2) + +b1z YE(2) + - - - + bz "E(2)

@ This gives the z—domain transfer function:

U(z) by+bizt+bz 2+ +bpz ™ 2 zeros : zj

D(z) = = =
(2) D(z) l+a1z7l+az724 -4 a,z7" lﬂ[ (z— 2) poles : z;

> z; & z; are real or in complex conjugate pairs
> n poles, m zeros, with (n — m) zeros at z=10
> in general there must be at least as many poles as zeros if it is a causal system
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Discrete Transfer Function

Example: PI controller

Example
Find the discrete transfer function of the PID controller defined in the time and frequency domain by:
1 [t de(t) 1
u(t) =k, {e(t) + ?I/o e(r)dT + Tp p” ] ) U(s) = ky {1 + s + Tp s] E(s)

o If such a controller is to be realized using a digital computer, the proportional part does not pose
any problems.

@ The integrator requires more attention. The simplest approach is to approximate it by Euler
forward rule

k-1
e(iT) T

u(k T) = /OkT e(r)dr ~

i=0

o For sufficiently small T this approximation yields a controller which produces a closed-loop
behavior similar to the one observed in continuous time.
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Numerical Integration

Reminder!

@ numerical integration of continuous time f(t) from ¢t =0 to t:

y:/otf(T)dT

@ We assume that the integral from t =0 to t = t,x_1 is known,

@ using only samples fy, i, -+, fx_1, fx, we approx.the integral by
computing the area A of the trapezoid:

te — te—
A:k k—1

3 (fk + fi_1)

@ For a constant step size T, thus

-
Up =y = Ug-1+ > (fk + fi_1)
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Numerical Differentiation

Reminder! Euler’s approximation

dx x(t+dt) — x(t dx  Xkr1— X

ax o x40 - x(t) o dx | Xk — Xk
dt  §t—0 ot dt T

For small enough T, this can be used to approximate a continuous controller using a discrete controller

@ Laplace transform — differential equation

_U(s)  k(s+a) du _ de
eg. D(s)= Eo)~ (sib) ~ &t bu = k(.

+ ae)

@ Differential equation — difference equation

ugrr = (1= bT)ug + Kexr1 + K(aT — 1)ex

Upy1 — Uk €k+1 — €k
g ——+bu, = k(—— =
¢ +Ouk ( T Jraek) = —ajuk + bpext1 + brex

T
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Discrete Transfer Function

Example: PI controller

@ In a delay—free (the delay can be included in the plant dynamics) system, the PID
differential—integral equation can be rewritten as:

du 1 d?e
— =k — T,
[dt+ e+ Ip— }

dt T, dt?
e using Euler's approximation (for 15t and 2"¢ derivatives), which gives approximate discrete time
controller:
Uk — Uk—1 ek — ek—1 1 ex — 2ex—1 + ex—2
=k — T
T [ R P T2 }

_ T Tp 2Tp Tp
Up = Ug—1+ kp |:<1 + ?[ + T) €k (1 + T> €—1+ Tek2:|

@ which can be written in a linear recurrence form as:
U = —ailg—1 + boex + brex—1 + brex_»

o For sufficiently small T, this approximation yields a controller which produces a closed-loop
behavior similar to the one observed in continuous time.
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The z-transform

@ So far we have considered z! as a delay operator acting on sequences
o to find E(z) from e(kT) we need to define the z-transform of the sequence:
Z{e(kT)} = Z{ec} = E(2)
o0 o0
= e(kT)z_k = Z ez K= tez ttez?2+ez 3+ ..
k=0 k=0
o the coefficients of this power series are the samples ¢, at different sampling instants.
@ This is a single-sided z-transform (i.e. all variables are assumed to be zero for k < 0).
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z-Transforms of Standard Discrete-Time Signals

@ we now obtain the z-transforms of commonly used discrete-time signals (sampled step, exponential,
and the discrete time impulse).
@ The following identities are used repeatedly to derive several important results:

1— g™t

n
1
k _
ZB 1— 3 aa>17 ;)a 1 2 ,0<a<1

Example: discrete-time impulse

1 k=0

derive the z-transform of the signal u(k) = d(k) = {0 k0

@ Applying the definition of the z-transform, we get:

k)}:zukzik:1+0+o+...:1
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z-Transforms of Standard Discrete-Time Signals

Example: decaying exponential
derive the z-transform of sampling the signal x(t) = C e~?*u(t), u(t) = unit stepat t=0 J

o sampling the signal x(t):
x*(t) =x(kT)=xx = Ce T ke Z*

@ take the z-transform:

oo

FI(KT)} =X(z2)=CY e T zk=C> (e 271"
k=0 k=0

e this is a geometric series’ which converges if |z| > e~?7 :

C Cz
T 1—eaT z-1 7 y_ g—al

X(2)

@ z-transform of exponential = rational polynomial (like Laplace)

1 — —1 4 2,2 _ 1
U(z)=1+az"t+a°z72+---, for 0 <a<1then U(z) = —75
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z-Transforms of Standard Discrete-Time Signals

Example: trapezoidal integration J

apply the z-transform to the difference equation of trapezoidal integration: ux = ux_1 + %(ek + ex—1)

@ We can do this by multiplying the difference equation by z=* and summing from 0 to oo

o0 o T o o0
Z uz k= Z U1z + E(Z enz K+ E ek_lz*k)
k=0 k=0 k=0 k=0

—_— — —_——
U(z) I E(2)
o0 o0 o0 o0
Z U1z K= Z yz Tl =271 Z uyz !l =z71 Z uyz = z_lU(z)
k=0 I=—1 I=—1 1=0
——
u,1:0

U(z) = z71U(2) + g [E(z) + z 'E(2)]

Uz) Tl+z! Tz+1
E(z) 21—-z1 2z-1
digital Control TR
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Tables of Laplace and z-Transforms,

Continuous  Laplace
No.  Time Transform Discrete Time  z-Transform
1 10} 1 b(k) 1
2 G} 1 1(k)
s
3 ' ! KT sampling ¢ gives
: 1y KT, 2{kT} = T z{k}
4 2 2 (Gog )71
5 1);
5 8 3 *n? (2 +4z+ D)T?
s [y
= "
6 ¢ ! d by settinga = ¢~
sta
7 - @ 1-d
S5+a)
8 e G-a a =i
GFa)s+i)
9 e 1 k1d*
(s+a)
10 sin(w,t) sin(w,kT)
11 €os(wut) s cos(w,kT)
e
i

12 e Stingur)

(s+Cun)” + e

&R Sin(w,kT)

& sin(wyT)

#cos(wqt)

T cos(w kT)

22 =2 T cos(w,

14 sinh(dn) sinh(kT) sinh(9T)z
—2cosh(BT)z + 1
15 cosh(dn cosh(FkT) cosh(3T))
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and z-Transform Properties

No. Property Formula

Linearity Zlafi(k) + 8f(k)} = aF1(2) + BF2(2)
2 Time Delay Z{f(k—n)}=z""F(z)
3 Time Advance Z{f(k+ 1)} =zF(z) — zf(0)

Z{flk+m} =2"F@) = 2f(O) =" f(1) -+ —2f(n = 1)

4 Discrete-Time

Convolution ZUARPHE) =2 D [k —i) p = Fi@F22)

il

5 Multiplication by Fla *f(k)} = Flaz)

Exponential
6 Complex o (pm _

Differentiation ZWo) (
7 Final Value Theorem J(0) = Zim fk) = Fim (1 = YF(2) = Zim (2= DF(2)

—® E| B

8 Initial Value Theorem — f(0) =

P/ 0= 20,70
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Administrative Stuff

o More on z-transforms will be given in tutorials.

o Mini—Projects - - -
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Thanks for your attention.

Questions?

Assoc. Prof. Dr.Ing.
Mohammed Nour Abdelgwad Ahmed

mnahmed@eng.zu.edu.eg
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