

Digital Control

Assoc. Prof. Dr.Ing.

Mohammed Ahmed mnahmed@eng.zu.edu.eg

Lecture 3: Linear Discrete Systems Analysis

Copyright © 2016 Dr.Ing, Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved.

Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Dept.

Lecture 3

Linear Discrete Systems Analysis

- Discrete Transfer Functions
- The z-Transform

Compare the continuous system time domain model

$$u(t) = -a_1 \frac{du}{dt} - \dots - a_n \frac{d^n u}{dt^n} + b_0 e + b_1 \frac{de}{dt} + \dots + b_m \frac{d^m u}{dt^m}$$
 differential equation

$$U(s) = \frac{U(s)}{D(s)} = \frac{b_0 + b_1 s + b_2 s^2 + \dots + b_m s^m}{1 + a_1 s + a_2 s^2 + \dots + a_n s^n}$$

• with the discrete system model:

$$u_k = -a_1 u_{k-1} - \dots - a_n u_{k-n} + b_0 e_k + \dots + b_m e_{k-m}$$

$$= -\sum_{i=1}^n a_i u_{k-i} + \sum_{i=0}^m b_i e_{k-i} \qquad \text{recurrence equation}$$

• Can we define a transfer function for the discrete system?

Suppose
$$\mathcal{L}\{u_k = u(kT)\} = U(s) \cdots$$
 then how can we represent $u_{k-1}, u_{k-2},$ etc.?

• If
$$\mathcal{L}\{x(t)\} = X(s)$$
, then $\mathcal{L}\{x(t-T)\} = e^{-sT}X(s)$, so

$$\mathcal{L}\{u_k\} = U(s)$$

$$\mathcal{L}\{u_{k-1}\} = e^{-sT} U(s)$$

$$\mathcal{L}\{u_{k-2}\} = e^{-2sT} U(s)$$

$$\vdots$$

$$\mathcal{L}\{u_{k-n}\} = e^{-nsT} U(s)$$

Define the discrete frequency domain operator

$$z = e^{sT}$$

$$\mathcal{L}\{u_k\} = U(z)$$

$$\mathcal{L}\{u_{k-1}\} = z^{-1} U(z)$$

$$\mathcal{L}\{u_{k-2}\} = z^{-2} U(z)$$

$$\vdots$$

$$\mathcal{L}\{u_{k-n}\} = z^{-n} U(z)$$

Comparison

• system representations:

Continuous

$$u(t) = -a_1 \frac{du}{dt} - \cdots + b_0 e + b_1 \frac{de}{dt} + \cdots$$

operators:

Continuous

$$\frac{du}{dt} \Rightarrow s U(s)$$

differential

Discrete

$$u_k = -a_1 u_{k-1} - \cdots + b_0 e_k + \cdots$$

Discrete

$$u_k \Rightarrow z^{-1} U(z)$$

delay

- The operator z is used to denote a **forward shift** by one sampling interval, i.e., $z \cdot x(k) = x(k+1)$.
- The shift operator z is analogous to the Heavyside operator s (differentiation).
- The analogy can be carried further, i.e., the **backward shift operation** is denoted by z^{-1} with $z^{-1} \cdot x(k) = x(k-1)$.

Apply the transformation to the linear recurrence equation:

$$u_{k} = -a_{1}u_{k-1} - a_{2}u_{k-2} - \dots - a_{n}u_{k-n} + b_{0}e_{k} + b_{1}e_{k-1} + \dots + b_{m}e_{k-m}$$

$$\downarrow \text{ transform } \downarrow$$

$$U(z) = -a_{1}z^{-1}U(z) - a_{2}z^{-2}U(z) - \dots - a_{n}z^{k-n}U(z) + b_{0}E(z) + b_{1}z^{-1}E(z) + \dots + b_{m}z^{-m}E(z)$$

• This gives the z-domain transfer function:

$$D(z) = \frac{U(z)}{D(z)} = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + \dots + b_m z^{-m}}{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_n z^{-n}} = \frac{\prod\limits_{j=1}^{m} (z - z_j)}{\prod\limits_{i=1}^{n} (z - z_i)}$$
 zeros : z_i poles : z_i

- \triangleright $z_i \& z_i$ are real or in complex conjugate pairs
- ▶ n poles, m zeros, with (n m) zeros at z = 0
- ▶ in general there must be at least as many poles as zeros if it is a causal system

Example: PI controller

Example

Find the discrete transfer function of the PID controller defined in the time and frequency domain by:

$$u(t) = k_{p} \left[e(t) + rac{1}{T_{I}} \int_{0}^{t} e(\tau) d au + T_{D} rac{de(t)}{dt}
ight], \qquad U(s) = k_{p} \left[1 + rac{1}{T_{I} s} + T_{D} s
ight] E(s)$$

- If such a controller is to be realized using a digital computer, the proportional part does not pose any problems.
- The integrator requires more attention. The simplest approach is to approximate it by Euler forward rule

$$u(k T) = \int_0^{kT} e(\tau) d\tau \approx \sum_{i=0}^{k-1} e(i T) \cdot T$$

• For sufficiently small *T* this approximation yields a controller which produces a closed-loop behavior similar to the one observed in continuous time.

Numerical Integration

Reminder!

• numerical integration of continuous time f(t) from t = 0 to t:

$$y = \int_0^t f(\tau) \, d\tau$$

- We assume that the integral from t = 0 to $t = t_{k-1}$ is known,
- using only samples $f_0, f_1, \dots, f_{k-1}, f_k$, we approx.the integral by computing the area A of the trapezoid:

$$A=\frac{t_k-t_{k-1}}{2}\left(fk+f_{k-1}\right)$$

• For a constant step size T, thus

$$u_k = y = u_{k-1} + \frac{T}{2} (fk + f_{k-1})$$

Numerical Differentiation

Reminder! Euler's approximation

$$\frac{dx}{dt} = \lim_{\delta t \to 0} \frac{x(t + \delta t) - x(t)}{\delta t} \quad \Rightarrow \quad \frac{dx}{dt} \approx \frac{x_{k+1} - x_k}{T}$$

For small enough T, this can be used to approximate a continuous controller using a discrete controller

e.g.
$$D(s) = \frac{U(s)}{E(s)} = \frac{k(s+a)}{(s+b)}$$
 \Rightarrow $\frac{du}{dt} + bu = k(\frac{de}{dt} + ae)$

② Differential equation \longrightarrow difference equation

e.g.
$$\frac{u_{k+1} - u_k}{T} + bu_k = k(\frac{e_{k+1} - e_k}{T} + ae_k)$$
 \Rightarrow $u_{k+1} = (1 - bT)u_k + Ke_{k+1} + K(aT - 1)e_k$ $= -a_1u_k + b_0e_{k+1} + b_1e_k$

Example: PI controller

 In a delay–free (the delay can be included in the plant dynamics) system, the PID differential–integral equation can be rewritten as:

$$\frac{du}{dt} = k_p \left[\frac{e}{dt} + \frac{1}{T_I} e + T_D \frac{d^2 e}{dt^2} \right]$$

• using Euler's approximation (for 1st and 2nd derivatives), which gives approximate discrete time controller:

$$\frac{u_k - u_{k-1}}{T} = k_p \left[\frac{e_k - e_{k-1}}{T} + \frac{1}{T_I} e_k + T_D \frac{e_k - 2e_{k-1} + e_{k-2}}{T^2} \right]$$

$$u_k = u_{k-1} + k_p \left[\left(1 + \frac{T}{T_I} + \frac{T_D}{T} \right) e_k - \left(1 + \frac{2T_D}{T} \right) e_{k-1} + \frac{T_D}{T} e_{k-2} \right]$$

• which can be written in a linear recurrence form as:

$$u_k = -a_1 u_{k-1} + b_0 e_k + b_1 e_{k-1} + b_2 e_{k-2}$$

• For sufficiently small T, this approximation yields a controller which produces a closed-loop behavior similar to the one observed in continuous time.

The z-transform

- So far we have considered z^1 as a **delay operator** acting on sequences
- to find E(z) from e(kT) we need to define the z-transform of the sequence:

$$\mathscr{Z}\lbrace e(kT)\rbrace = \mathscr{Z}\lbrace e_k\rbrace = E(z)$$

$$= \sum_{k=0}^{\infty} e(kT)z^{-k} = \sum_{k=0}^{\infty} e_k z^{-k} = e_0 + e_1 z^{-1} + e_2 z^{-2} + e_3 z^{-3} + \cdots$$

- the **coefficients** of this power series are the **samples** e_k at different sampling instants.
- This is a single-sided z-transform (i.e. all variables are assumed to be **zero** for k < 0).

z-Transforms of Standard Discrete-Time Signals

- we now obtain the z-transforms of commonly used discrete-time signals (sampled step, exponential, and the discrete time impulse).
- The following identities are used repeatedly to derive several important results:

$$\sum_{k=0}^{n} a^{k} = \frac{1 - a^{n+1}}{1 - a}, \, a > 1, \qquad \sum_{k=0}^{n} a^{k} = \frac{1}{1 - a}, \, 0 < a < 1$$

Example: discrete-time impulse

derive the z-transform of the signal
$$u(k) = \delta(k) = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

• Applying the definition of the z-transform, we get:

$$\mathscr{Z}{u(k)} = \sum_{k=0}^{\infty} u_k z^{-k} = 1 + 0 + 0 + \dots = 1$$

z-Transforms of Standard Discrete-Time Signals

Example: decaying exponential

derive the z-transform of sampling the signal $x(t) = C e^{-at} u(t)$, u(t) = unit step at t = 0

• sampling the signal x(t):

$$x^*(t) = x(kT) = x_k = C e^{-akT}, k \in \mathbb{Z}^*$$

• take the z-transform:

$$\mathscr{Z}\{x(kT)\} = X(z) = C \sum_{k=0}^{\infty} e^{-akT} z^{-k} = C \sum_{k=0}^{\infty} (e^{-aT} z^{-1})^k$$

• this is a **geometric series**¹ which converges if $|z| > e^{-aT}$:

$$X(z) = \frac{C}{1 - e^{-aT} z^{-1}} = \frac{Cz}{z - e^{-aT}}$$

• z-transform of exponential = rational polynomial (like Laplace)

 $^1 \emph{U}(\emph{z}) = 1 + \emph{a} \, \emph{z}^{-1} + \emph{a}^2 \, \emph{z}^{-2} + \cdots$, for $0 < \emph{a} < 1$ then $\emph{U}(\emph{z}) = \frac{1}{1 - (\emph{a}/\emph{z})}$

z-Transforms of Standard Discrete-Time Signals

Example: trapezoidal integration

apply the z-transform to the difference equation of trapezoidal integration: $u_k = u_{k-1} + \frac{T}{2}(e_k + e_{k-1})$

• We can do this by multiplying the difference equation by z^{-k} and summing from 0 to ∞

$$\sum_{k=0}^{\infty} u_k z^{-k} = \sum_{k=0}^{\infty} u_{k-1} z^{-k} + \frac{T}{2} \left(\sum_{k=0}^{\infty} e_k z^{-k} + \sum_{k=0}^{\infty} e_{k-1} z^{-k} \right)$$

$$\sum_{k=0}^{\infty} u_{k-1} z^{-k} = \sum_{l=-1}^{\infty} u_l z^{-l-1} = z^{-1} \sum_{l=-1}^{\infty} u_l z^{-l} = z^{-1} \sum_{l=0}^{\infty} u_l z^{-l} = z^{-1} U(z)$$

$$U(z) = z^{-1} U(z) + \frac{T}{2} \left[E(z) + z^{-1} E(z) \right]$$

$$\frac{U(z)}{E(z)} = \frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}} = \frac{T}{2} \frac{z+1}{z-1} \implies \text{Transfer function}$$

Tables of Laplace and z-Transforms, and z-Transform Properties

No.	Continuous Time	Laplace Transform	Discrete Time	z-Transform
1	δ(t)	1	δ(k)	1
2	1(t)	1 s	1(k)	$\frac{z}{z-1}$
3	t	$\frac{1}{s^2}$	kT	$\frac{zT}{(z-1)^2}$ sampling t gives kT , $z\{kT\} = T z\{k\}$
4	r ²	$\frac{2!}{s^3}$	$(kT)^2$	$\frac{z(z+1)T^2}{(z-1)^3}$
5	t ³	3! s4	$(kT)^3$	$\frac{z(z^2+4z+1)T^3}{(z-1)^4}$
6	$e^{-\alpha t}$	$\frac{1}{s+\alpha}$	a^k	$\frac{z}{z-a}$ by setting $a = e^{-\alpha T}$.
7	$1 - e^{-\alpha t}$	$\frac{\alpha}{s(s+\alpha)}$	$1-a^k$	$\frac{(1-a)z}{(z-1)(z-a)}$
8	$e^{-\alpha t} - e^{-\beta t}$	$\frac{\beta - \alpha}{(s + \alpha)(s + \beta)}$	$a^k - b^k$	$\frac{(a-b)z}{(z-a)(z-b)}$
9	te ^{-at}	$\frac{1}{(s+\alpha)^2}$	kTak	$\frac{az T}{(z-a)^2}$
10	$\sin(\omega_n t)$	$\frac{\omega_n}{s^2 + \omega_n^2}$	$\sin(\omega_n kT)$	$\frac{\sin(\omega_n T)z}{z^2 - 2\cos(\omega_n T)z + 1}$
11	$\cos(\omega_n t)$	$\frac{s}{s^2 + \omega_n^2}$	$\cos(\omega_s kT)$	$\frac{z[z - \cos(\omega_n T)]}{z^2 - 2\cos(\omega_n T)z + 1}$
12	$e^{-\zeta \omega_{\lambda} t} \sin(\omega_{d} t)$	$\frac{\omega_d}{(s+\zeta\omega_n)^2+\omega_d^2}$	$e^{-\zeta \omega_n kT} \sin(\omega_d kT)$	$\frac{e^{-\zeta \omega_{n}T} \sin(\omega_{d}T)z}{z^{2}-2e^{-\zeta \omega_{n}T} \cos(\omega_{d}T)z+e^{-2\zeta \omega_{n}T}}$
13	$e^{-\zeta \omega_h t} \cos(\omega_d t)$	$\frac{s + \zeta \omega_n}{(s + \zeta \omega_n)^2 + \omega_d^2}$	$e^{-\zeta \omega_n kT} \cos(\omega_d kT)$	$\frac{z[z-e^{-(\omega_n T} \mathrm{cos}(\omega_d T)]}{z^2-2e^{-(\omega_n T} \mathrm{cos}(\omega_d T)z+e^{-2(\omega_n T)}}$
14	$sinh(\beta t)$	$\frac{\beta}{s^2 - \beta^2}$	sinh(βkT)	$\frac{\sinh(\beta T)z}{z^2 - 2\cosh(\beta T)z + 1}$
15	$\cosh(\beta t)$	$\frac{s}{s^2 - \beta^2}$	$\cosh(\beta kT)$	$\frac{z[z - \cosh(\beta T)]}{z^2 - 2\cosh(\beta T)z + 1}$

No.	Property	Formula
1	Linearity	$\mathcal{Z}\{\alpha f_1(k) + \beta f_2(k)\} = \alpha F_1(z) + \beta F_2(z)$
2	Time Delay	$\mathcal{Z}\{f(k-n)\} = z^{-n}F(z)$
3	Time Advance	$\mathcal{Z}\{f(k+1)\} = zF(z) - zf(0)$ $\mathcal{Z}\{f(k+n)\} = z^n F(z) - z^n f(0) - z^{n-1} f(1) \cdots - zf(n-1)$
4	Discrete-Time Convolution	$\mathcal{Z}\{f_1(k)^*f_2(k)\} = \mathcal{Z}\left\{\sum_{i=0}^k f_1(i)f_2(k-i)\right\} = F_1(z)F_2(z)$
5	Multiplication by Exponential	$\mathcal{Z}\{a^{-k}f(k)\} = F(az)$
6	Complex Differentiation	$\mathcal{Z}\lbrace k^m f(k)\rbrace = \left(-z \frac{d}{dz}\right)^m F(z)$
7	Final Value Theorem	$f(\infty) = \mathcal{L}_{im} f(k) = \mathcal{L}_{im} (1 - z^{-1}) F(z) = \mathcal{L}_{im} (z - 1) F(z)$
8	Initial Value Theorem	$f(0) = \mathcal{L}_{im} f(k) = \mathcal{L}_{im} F(z)$ $z \to \infty$

Administrative Stuff

- More on z-transforms will be given in tutorials.
- Mini–Projects · · ·

Thanks for your attention.

Questions?

Assoc. Prof. Dr.Ing.

Mohammed Nour Abdelgwad Ahmed

mnahmed@eng.zu.edu.eg

Zagazig University
Faculty of Engineering

Computer and Systems Engineering Department

Copyright © 2016 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved.

Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.