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Lecture: 5

Stability Analyses

Response of higher-order systems

Stability of linear systems

Routh-Hurwitz stability criterion

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 2 / 20



Time Domain Analysis of second Order Systems

Effect of Natural Frequency

ζ = 0.5 and ωn = 10, 35, 60, 85 rad/s
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Effect of Damping ratio

ζ = 0, 0.5, 1, 1.5 and ωn = 1 rad/s
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Time Domain Analysis of second Order Systems
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Response of higher-order systems

How can we analyze systems with more zeros, more poles?

First, write the TF in this standard form:

H(s) = K
(s − z1)(s − z2) · · · (s − zm)

(s − p1)(s − p2) · · · (s − pn)

Location of poles determines almost everything

How many cases do we have?

1 For distinct real poles:

H(s) =
α1

s − p1
+

α2

s − p2
+ · · ·+

αn

s − pn
=

n
∑

i=1

αi

s − pi

◮ it is very easy to derive unit impulse responses as:

y(t) = α1 e
−p1 t + · · ·+ αn e

−pn t =

n∑

i=1

αi e
−pi t

◮ Transients will vanish iff p1, ..., pn are negative
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Response of higher-order systems

2 For distinct real and complex poles:

H(s) =

q
∑

i=1

αi

s − pi
+

r
∑

k=1

βk + γk
s2 + 2σk s + ω2

k

Unit-impulse response:

y(t) =

q
∑

i=1

αi e
−pi t +

r
∑

k=1

ck e−σk t sin (ωk t + θk)

Similar to the previous case, transients will vanish if all poles are in the left hand side (LHP) of the
complex s-plan
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Response of higher-order systems

Each real pole p contributes to an exponential term in any response

Each complex pair of poles contributes a modulated oscillation
◮ The decay of these oscillations depend on whether the real-part of the pole is negative or positive
◮ The magnitude of oscillations, contributions depends on residues, hence on zeros

Dominant Poles

the poles closest to the imaginary axis are the ones that tend to dominate the response since their
contribution takes a longer time to die out.
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Dominant Poles

H1 =
1

(s2 + 2 s + 2) (s2 + 8 s + 25)

p1,2 = 1± j 1 p3,4 = −4± j 3
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Stability Analyses

Stability: one of the most important problems in control

Suppose that we have the following transfer function of a closed-loop discrete-time system:

Y (s)

R(s)
=

G (s)

1 + G (s)H(s)
=

N(s)

D(s)

The system is stable if all poles∗ have strictly negative real parts i.e. lie on the left-hand-side of
the s-plane.

BIBO: Bounded-Input Bounded-Output

System is stable if, under bounded input, its output will converge to a finite value, i.e., transient terms
will eventually vanish. Otherwise, it is unstable

∗roots of the characteristic equation D(s) = 0
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Design Problems Related to Stability

−

+ Gc(s) Gp(s)
R(s) Y (s)

Stability Criterion: for a given system (i.e., given Gc(s),Gp(s)), determine if it is stable

Stabilization: for a given system that is unstable (i.e., poles of Gp(s) are unstable), design Gc(s)
such as Y (s)/R(s) is stable

Most engineering design applications for control systems evolve around this simple, yet
occasionally challenging idea

Some systems cannot be stabilized

For more complex Gp(s), design of Gc(s) is likely to be more complex
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Stability Analyses

There are several methods to check the stability of a discrete-time system such as:

Factorizing D(s) and finding its roots.

Lyapunov Stability Theorem

Routh–Hurwitz criterion .
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Factorizing Characteristic Equation

The direct method to check system stability is to factorize the characteristic equation,
◮ determine its roots, and check if their real parts are all less than 0.

it is not usually easy to factorize the characteristic equation by hand

we can use MATLAB command roots .

T1(s) =
10(s + 1)

s5 + 3s3 + 2s + 5
T2(s) =

10(s + 1)

s (s4 + s3 + 3s2 + s + 2)

roots([1 0 3 0 2 5])

−0.9323

−0.3036 + j 1.7167

−0.3036− j 1.7167

0.7697 + j 1.0827

0.7697− j 1.0827

Unstable

abs(roots([1 1 3 1 2 0]))

0

−0.5000 + j 1.3229

−0.5000− j 1.3229

−0.0000 + j 1.0000

−0.0000− j 1.0000

Stable
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Routh–Hurwitz Stability Criterion

It is a method for determining continuous system stability.

for any polynomial of any degree, determine number of roots (not the exact locations) in the LHS,
RHS, or jω axis without having to solve the polynomial

Advantages: Less computations

Routh–Hurwitz Criterion

the number of roots of the characteristic equation with positive real parts is equal to the number of
changes in sign of the first column of the Routh array.

Sufficient and Necessary Condition for Routh-Hurwitz Stability

Sufficient: All the coefficients of characteristic array must be non-zero AND of the same sign

Necessary: all the elements of the first column of the Routh array should have the same sign.
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Routh–Hurwitz Stability Criterion

Consider the characteristic equation:

a0 s
n + a1 s

n−1 + a2 s
n−2 + · · ·+ an−1 s

1 + an s
0 = 0

if all coefficients of ai are nonzero and have the same sign, then construct the Routh-Array:

sn a0 a2 a4 a6 · · ·

sn−1 a1 a3 a5 a7 · · ·

sn−2 b1 b2 b3 · · · · · ·

sn−3 c1 c2
...

...
...

...
...

s0 an

b1 =
a1a2 − a3a0

a1
, b2 =

a1a4 − a5a0

a1
b3 =

a1a6 − a7a0

a1
, · · ·

c1 =
b1a3 − b2a1

b1
, c2 =

b1a55− b3a1

b1
, · · ·

number of roots on the right half-plane is equal to number of sign changes in the first column.
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Routh–Hurwitz Stability Criterion
Examples

Example

Determine the stability of the systems with the following characteristic polynomials:

s2 − s + 1a) s4 + s3 + s2 + 1b)

−s4 + s3 + s2 + s + 1c) s4 + 2s3 + 3s2 + 4s + 5d)

a s2 − s + 1 is not stable,

b s4 + s3 + s2 + 1 is not stable

c −s4 + s3 + s2 + s + 1 is undetermined
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Routh–Hurwitz Stability Criterion
Examples

d for s4 + 2s3 + 3s2 + 4s + 5, we construct the Routh array as:

s4 1 3 5
s3 2 4 0
s2 1 = 2×3−4×1

2 5 = 2×5−1×0
2

s1 −6 = 1×4−2×5
1

s0 5

number of sign changes = 2, then two roots are on the RHS of s-plan ⇒ system is unstable
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Routh–Hurwitz Stability Criterion
Examples

Example

Given the next unity-feedback system, find range of
k such that the system is stable.

−

+
k

s(s2 + 10 s + 20)

R(s) Y (s)

first, we find the closed loop transfer function

T (s) =
k

s3 + 10 s2 + 20 s + k
⇒ ch.Eq. : s3 + 10 s2 + 20 s + k = 0

construct the Routh array as:

s3 1 20
s2 10 k

s1
−1

10
(k − 200)

s0 k

Need no sign change in the first column, so k < 200 and k > 0 ⇒ 0 < k < 200
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Routh–Hurwitz Stability Criterion
Special Cases: Case 1: Zero in the first column

If first element of a row is zero, division by zero would be required to form the next row.

To avoid this case, zero is replaced with a very small positive number (ǫ).

Example: s3 + 2s2 + s + 2 = 0

s3 1 1
s2 2 2
s1 0 ≈ ǫ
s0 2

the sign of coefficient above ǫ is the same as
the sign under ⇒ there are pair of complex
roots

Example: s3 − 3s + 2 = (s − 1)2(s + 2) = 0

s3 1 −3
s2 0 ≈ ǫ 2
s1

(

−3− 2
ǫ

)

s0 2

the sign of the coefficients above and below ǫ
change ⇒ system is not stable
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Routh–Hurwitz Stability Criterion
Special Cases: Case 2: Entire Row is Zero

an entire row consists of zeros happens because there is an even polynomial that is a factor of the
original polynomial.

Then we have: two real roots with equal magnitudes and opposite signs and/or two complex
conjugate roots

Example: p(s) = s5 + 5s4 + 11s3 + 23s2 + 28s + 12 = 0

s5 1 11 28
s4 5 23 12
s3 6.4 25.6
s2 3 12
s1 0 0 ⇐ old row, define auxiliary polynomial : P(s) = 3s2 + 12
s1 6 0 ⇐ new row, define auxiliary polynomial : P ′(s) = 6s + 0
s0 12

roots of auxiliary polynomial: 3s2 + 12 = 0 ⇒ p1,2 = ±j2 are roots for the original polynomial
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Routh–Hurwitz Stability Criterion
Special Cases: Case 2: Entire Row is Zero

Example

Determine if the system with the following characteristic equation stable or not:

s5 + 2s4 + 24s3 + 48s2 − 25s − 50 = 0

construct the Routh array as:

s5 1 24 −25
s4 2 48 −50
s3 0 0 ⇐ old row, define auxiliary polynomial : P(s) = 2s4 + 48s2 − 50
s3 8 96 ⇐ new row, define auxiliary polynomialP ′(s) = 8s3 + 96
s2 24 −50
s1 112.7 0
s0 −50

since there is one sign change in the first column, then the system is not stable.
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Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.
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