CSE302 Automatic Control Engineering

Lecture 4: Transient and Steady-State Response Analyses

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 4

Transient and Steady-State Response Analyses

- Time Domain Analysis of Control systems
 - General linear systems analysis
 - Responses to different test signals
- First Order Dynamical Systems
- Second Order Dynamical Systems

Order and Type of a system

Order of the system

• Consider a system defined by the transfer function:

$$T(s) = rac{Y(s)}{U(s)} = rac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

• The order of this system is *n* which is defined by the highest power for *s* in the denominator.

The system type Number

- It is defined as the number of **poles at the origin** of the **open loop transfer function** G(s)H(s).
- Consider the open loop transfer function of a system as :

$$G(s)H(s) = rac{Y(s)}{U(s)} = rac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^c \left(s^n + a_{n-1}s^{n-1} + \dots + a_0\right)}$$

• The system of **type** c and has an **order** of n + c.

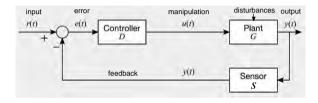
$$G(s)H(s) = \frac{50}{(s+1)(s+4)} \Rightarrow \text{System of type 0}$$

$$G(s)H(s) = \frac{10s^2 + 3}{s^2(3s^4 + 2s^3 + s^2 + 4s + 3)} \Rightarrow \text{System of type 2}$$

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Time Domain Analysis

In time-domain analysis the response of a dynamic system to an input is expressed as a function of time.



- It is possible to compute the time response of a system if the nature of **input** and the mathematical **model** of the system are known.
 - ▶ Usually, the input signals to control systems are not known fully ahead of time.
 - ► For example, in a radar tracking system, the position and the speed of the target to be tracked may vary in a random fashion.
- It is therefore difficult to express the actual input signals mathematically by simple equations.

Time Domain Analysis

Standard Test Signals

- analyze and characterize input-output behavior
 - Simple idea: want to know how your system is performing?
 - excite it with different test inputs \Rightarrow study the response

Standard Test Signals

- The characteristics of actual input signals are:
 - ▶ a sudden shock, a sudden change, a constant velocity, and constant acceleration.
 - another standard signal of great importance is a sinusoidal signal.
- The dynamic behavior of a system is therefore judged and compared under application of these standard test signals

Standard Test Signals

• Impulse input: $\delta(t)$, for a sudden shock:

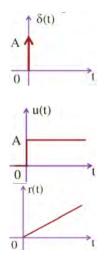
$$\delta(t) = \begin{cases} A, & \text{for } t = 0 \\ 0, & \text{for } t \neq 0 \end{cases} \Rightarrow R(s) = \mathscr{L}\{\delta(t)\} = A$$

• Step input: u(t), characterizes system ability to track sudden input changes:

$$u(t) = egin{cases} A, & ext{for } t \geq 0 \ 0, & ext{for } t < 0 \ \Rightarrow U(s) = \mathscr{L}\{u(t)\} = rac{A}{s} \end{cases}$$

• **Ramp** input: r(t), characterizes system ability to track varying input with aconstant velocity

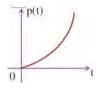
$$r(t) = egin{cases} A\,t, & ext{for }t\geq 0\ 0, & ext{for }t<0 \ \end{pmatrix}
onumber R(s) = \mathscr{L}\{r(t)\} = rac{A}{s^2}$$



Standard Test Signals

 Parabolic input p(t) imitates the constant acceleration characteristic of actual input signal.

$$p(t) = egin{cases} rac{A\,t^2}{2}, & ext{for } t \geq 0 \ 0, & ext{for } t < 0 \end{cases} \Rightarrow P(s) = \mathscr{L}\{p(t)\} = rac{A}{s^3}$$



• Why are these important? How is this useful? – Relationship between them: unit-impulse response unit-step response unit-ramp response $\mathscr{L}{y(t)} = T(s)$ $\mathscr{L}{y(t)} = \frac{T(s)}{s}$ $\mathscr{L}{y(t)} = \frac{T(s)}{s^2}$

Time Domain Analysis

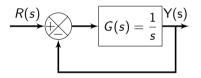
Example

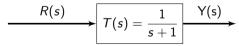
Example

Find the response of the following system to unit impulse, step, and ramp inputs

• First, we find the overall transfer function,
$$T(s)$$

• since $y(t) = \mathcal{L}^{-1}{Y(s)} = \mathcal{L}^{-1}{T(s)R(s)}$, then:
Input $r(t)$ Response $y(t)$
 $\delta(t)$ e^{-t}
 $u(t) = 1^+$ $1 - e^{-t}$
 $u(t) = t$ $t - 1 + e^{-t}$

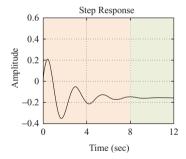




Transient and Steady State Responses

• Any output for linear system is decomposed of: $y(t) = y_{ss}(t) + y_{tr}(t)$

- y_{ss}(t): stead-state (forced) response signifies the system's ability to eventually track input signals after few seconds
- $y_{tr}(t)$: transient (natural) response path the output took to reach SS
 - Overly oscillatory $y_{tr}(t)$ is usually bad for systems. Why?
 - Slow transient response is typically undesirable. Why?



Time Domain Analysis of First Order Systems

• First order systems are characterized by:

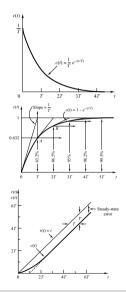
$$T(s) = rac{Y(s)}{R(s)} = rac{k}{Ts+1}, \qquad egin{array}{c} T : \mbox{time constant}, \ k : \mbox{DC gain} \end{array}$$

• Impulse response:
$$y(t) = \mathscr{L}^{-1}\left\{\frac{k/T}{s+1/T}\right\} = \frac{k}{T}e^{\frac{-t}{T}}$$

• Step response: $y(t) = \mathscr{L}^{-1}\left\{\frac{k}{s(Ts+1)}\right\} = k\left(1-e^{\frac{-t}{T}}\right)$

note: System takes five time constants to reach its final value.

• Ramp response:
$$y(t) = \mathscr{L}^{-1}\left\{\frac{k}{s^2(Ts+1)}\right\} = k\left(t - T + Te^{\frac{-t}{T}}\right)$$

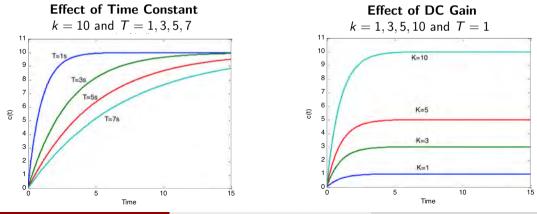


Time Domain Analysis of First Order Systems

Effect of DC Gain and Time Constant

Step response of First Order System:

$$y(t) = \mathscr{L}^{-1}\left\{\frac{k}{s(Ts+1)}\right\} = k\left(1 - e^{\frac{-t}{T}}\right)$$



Time Domain Analysis of First Order Systems

Example

Example

Impulse response of a first order system is given by: $y(t) = 3(1 - e^{-0.5t})$ Find the system time constant, DC gain, transfer function, and step response.

- The Laplace transform of impulse response of a system is its the transfer function.
- Therefore, this system transfer function is:

$$T(s) = \frac{Y(s)}{R(s)} = \mathscr{L}\left\{3\left(1 - e^{-0.5t}\right)\right\} = \frac{3}{s + 0.5} = \frac{6}{2s + 1}$$

- DC gain k = 6, Time constant T = 2
- step response:

$$y(t) = \mathscr{L}^{-1}\left\{\frac{6}{2s+1}\frac{1}{s}\right\} = \mathscr{L}^{-1}\left\{\frac{6}{s} - \frac{6}{s+0.5}\right\} = 6\left(1 - e^{-0.5t}\right)$$

Time Domain Analysis of second Order Systems

- Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of responses that must be analyzed and described.
- Varying a first-order system parameters (T, K) simply changes the speed and offset of the response
- Changes in the parameters of a second-order system can change the form of the response.
- A second-order system can display characteristics much like a first-order system or, depending on component values, display damped or pure oscillations for its transient response.

Time Domain Analysis of second Order Systems

$$R(s) \longrightarrow G(s) = \frac{\omega_n^2}{s(s+2\xi\omega_n)} Y(s)$$

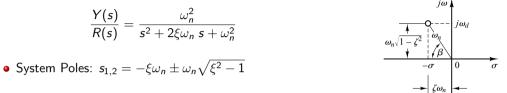
• Most commonly used time domain performance measures refer to a 2nd order system:

$$\frac{Y(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

 ω_n undamped natural frequency ξ damping ratio

- ξ is a measure of the degree of resistance to change in the system output.
- ω_n is the frequency of oscillation of the system without damping.
- The performance of a control system is usually characterized by its step response.
 - step input is easy to generate and gives the system a nonzero steady-state condition, which can be measured.

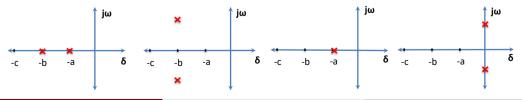
Time Domain Analysis of second Order Systems



• Depending upon the value of ξ , a second-order system can be set into one of the four categories:

- **Overdamped**: the system has **two real distinct** poles ($\xi > 1$).
- **Q** Underdamped: the system has two complex conjugate poles ($0 < \xi < 1$)
- **O Critically damped:** the system has **two real repeated** poles ($\xi = 1$).

O Undamped: the system has two **pure complex** poles ($\xi = 0$)



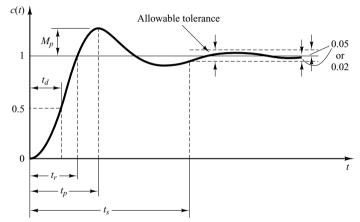
Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Step Response of second Order Systems

$$\begin{aligned} \frac{Y(s)}{R(s)} &= \frac{\omega_n^2}{s^2 + 2\xi\omega_n \, s + \omega_n^2} & \text{for unit-step input } R(s) = \frac{1}{s} \\ Y(s) &= \frac{\omega_n^2}{s^2 + 2\xi\omega_n \, s + \omega_n^2} \, R(s) = \frac{\omega_n^2}{s \, (s^2 + 2\xi\omega_n \, s + \omega_n^2)} \\ &= \frac{1}{s} - \frac{s + 2\xi\omega_n}{(s + \xi\omega_n)^2 + \omega_n^2 \, (1 - \xi^2)} = \frac{1}{s} - \frac{s + 2\xi\omega_n}{(s + \xi\omega_n)^2 + \omega_d^2} \\ y(t) &= \mathscr{L}^{-1}\{Y(s)\} \\ &= 1 - \frac{1}{\sqrt{1 - \xi^2}} \, e^{-\xi\omega_n t} \sin\left(\omega_n \sqrt{1 - \xi^2} \, t + \phi\right) \\ \phi &= \tan^{-1} \frac{\sqrt{1 - \xi^2}}{\xi} \quad 0 < \xi < 1, \quad 0 < \phi < \frac{\pi}{2}, \\ \omega_d &= \omega_n \sqrt{1 - \xi^2} \text{ damped natural frequency} \end{aligned}$$

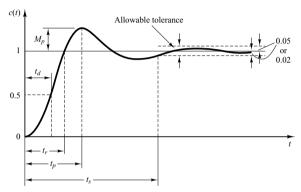
Unit-step response of overdamped and undamped Systems are left as exercise to you.

• The typical response of a 2^{nd} order system when excited with a unit step input



• In this response, the performance indices are usually defined: rise time; peak time; settling time; maximum overshoot; and steady-state error.

Rise time (T_r)

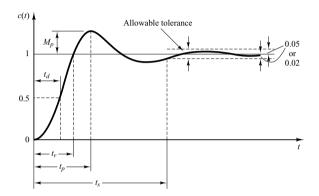


• time required for the response to go from 0 to 100% of its final value.

• a measure of speed of response (smaller rise time \Rightarrow faster response)

$$T_r = rac{\pi - eta}{\omega_d}, \quad eta = an^{-1} rac{\omega_d}{\xi \omega_n}, \quad \omega_d = \omega_n \sqrt{1 - \xi^2}$$

Peak time (T_p)

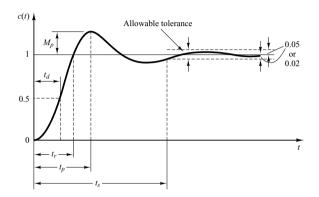


- time required for the response to reach its peak value.
- response is faster when peak time is smaller, but with higher overshoot.

$$T_{p} = \frac{\pi}{\omega_{a}}$$

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

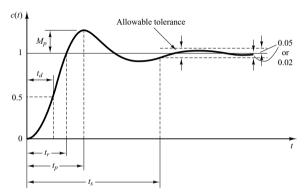
Settling time (T_s)



• time required for response to reach and stay within a range (2 or 5%) about final value.

$$T_s = \frac{3}{\xi \omega_n}$$
 (for 5%) $T_s = \frac{4}{\xi \omega_n}$ (for 2%)

Percent Overshoot (M_p)



• The percent overshoot is defined as:

$$M_p = rac{y_m - y_{ss}}{y_{ss} - y_0} imes 100\%,$$

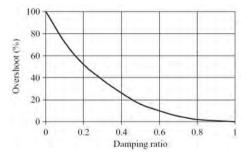
 y_0 initial, y_m maximum, and y_{ss} is steady state (final) values of the step response, respectively.

Percent Overshoot (M_p)

• For 2nd order system, the percent overshoot is calculated as:

$$M_{p}=\exp(-\xi\pi/\sqrt{1-\xi^{2}})$$

- The amount of overshoot depends on the damping ratio
 (ξ) and directly indicates the relative stability of the
 system.
 - The lower is the damping ratio, the higher the is maximum overshoot.



The steady-state error (e_{ss})

- difference between the reference input and the output response at steady-state.
- Small e_{ss} is required in most control systems. However, in some systems such as position control, it is important to have zero e_{ss}.
- e_{ss} can be found using the final value theorem:
 If the Laplace transform of the output is Y(s), then final (steady-state) value is given by:

$$y_{ss} = \lim_{t \to \infty} y(t) = \lim_{s \to 0} sY(s)$$

• Hence, for a unit step input, e_{ss} is given as:

$$e_{ss} = 1 - \lim_{s \to 0} sY(s)$$

Example

Determine the step response **performance indices** of the system with the following closed-loop transfer function:

$$rac{Y(s)}{R(s)}=rac{1}{s^2+s+1}$$

• Comparing the given system with the standard 2^{nd} order transfer function:

$$rac{Y(s)}{R(s)} = rac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

• We find that $\omega_n = 1 \text{ rad/s}$ and $\xi = 0.5$. Thus, the damped natural frequency is:

$$\omega_d = \omega_n \sqrt{1 - \xi^2} = 0.866$$

Solution of Example

• percent overshoot is:

$$M_p = e^{-\xi \pi / \sqrt{1 - \xi^2}} = 0.16 = 16\%$$

• peak time is:

$$T_{\rho} = \frac{\pi}{\omega_d} = 3.627$$

$$\beta = \tan^{-1} \frac{\omega_d}{\xi \omega_n} = 1.047,$$

$$T_r = \frac{\pi - \beta}{\omega_d} = \frac{\pi - 1.047}{0.866} = 2.42 \text{ sec},$$

$$T_s = \frac{4}{\xi \omega_n} = 8 \text{ sec},$$

$$e_{ss} = 1 - \lim_{s \to 0} sY(s) = 1 - \lim_{s \to 0} s \frac{1}{s(s^2 + s + 1)} = 0$$

As noticed, the step response performance indices are functions of (ξ, ω_n).
 Also (ξ, ω_n) determine system poles:

$$s = -\xi\omega_n \pm j\omega_n \sqrt{1-\xi^2}$$

• Therefore, the **response** of a system is determined by the position of its **poles**.

placing the closed-loop poles at **good** locations, we can shape the response of the system and achieve desired time response characteristics.

• Although the previous analysis is conducted for 2nd order continuous-time system, the approach is also applicable for higher-order systems.

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.