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Lecture: 4

Transient and Steady-State Response Analyses

Time Domain Analysis of Control systems
◮ General linear systems analysis
◮ Responses to different test signals

First Order Dynamical Systems

Second Order Dynamical Systems
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Order and Type of a system

Order of the system

Consider a system defined by the transfer function:

T (s) =
Y (s)

U(s)
=

sm + bm−1s
m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

The order of this system is n which is defined by the highest power for s in the denominator.

The system type Number

It is defined as the number of poles at the origin of the open loop transfer function G (s)H(s).
Consider the open loop transfer function of a system as :

G (s)H(s) =
Y (s)

U(s)
=

sm + bm−1s
m−1 + · · ·+ b0

sc (sn + an−1sn−1 + · · ·+ a0)

The system of type c and has an order of n + c .

G (s)H(s) =
50

(s + 1)(s + 4)
⇒ System of type 0

G (s)H(s) =
10s2 + 3

s2(3s4 + 2s3 + s2 + 4s + 3)
⇒ System of type 2
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Time Domain Analysis

In time-domain analysis the response of a dynamic system to an input is expressed as a function of time.

manipulation output

feedback

errorinput disturbances

s

It is possible to compute the time response of a system if the nature of input and the
mathematical model of the system are known.

◮ Usually, the input signals to control systems are not known fully ahead of time.
◮ For example, in a radar tracking system, the position and the speed of the target to be tracked may

vary in a random fashion.

It is therefore difficult to express the actual input signals mathematically by simple equations.
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Time Domain Analysis
Standard Test Signals

analyze and characterize input-output behavior
◮ Simple idea: want to know how your system is performing?
◮ excite it with different test inputs ⇒ study the response

Standard Test Signals

The characteristics of actual input signals are:
◮ a sudden shock, a sudden change, a constant velocity, and constant acceleration.
◮ another standard signal of great importance is a sinusoidal signal.

The dynamic behavior of a system is therefore judged and compared under application of these
standard test signals
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Standard Test Signals

Impulse input: δ(t), for a sudden shock:

δ(t) =

{

A, for t = 0

0, for t 6= 0
⇒ R(s) = L{δ(t)} = A

Step input: u(t), characterizes system ability to track sudden input changes:

u(t) =

{

A, for t ≥ 0

0, for t < 0
⇒ U(s) = L{u(t)} =

A

s

Ramp input: r(t), characterizes system ability to track varying input with
aconstant velocity

r(t) =

{

A t, for t ≥ 0

0, for t < 0
⇒ R(s) = L{r(t)} =

A

s2
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Standard Test Signals

Parabolic input p(t) imitates the constant acceleration characteristic of
actual input signal.

p(t) =

{

A t2

2 , for t ≥ 0

0, for t < 0
⇒ P(s) = L{p(t)} =

A

s3

Why are these important? How is this useful? – Relationship between them:

unit-impulse response unit-step response unit-ramp response

L{y(t)} = T (s) L{y(t)} =
T (s)

s
L{y(t)} =

T (s)

s2

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 7 / 26



Time Domain Analysis
Example

Example

Find the response of the following system to unit impulse,
step, and ramp inputs

First, we find the overall transfer function, T (s)

since y(t) = L −1{Y (s)} = L −1{T (s)R(s)}, then:
Input r(t) Response y(t)
δ(t) e−t

u(t) = 1+ 1− e−t

u(t) = t t − 1 + e−t

−+
R(s)

G (s) =
1

s

Y(s)

R(s)
T (s) =

1

s + 1

Y(s)
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Transient and Steady State Responses

Any output for linear system is decomposed of: y(t) = yss(t) + ytr (t)

yss(t): stead-state (forced) response — signifies the system’s
ability to eventually track input signals after few seconds

ytr (t): transient (natural) response — path the output took to
reach SS

◮ Overly oscillatory ytr (t) is usually bad for systems. Why?
◮ Slow transient response is typically undesirable. Why?
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Time Domain Analysis of First Order Systems

First order systems are characterized by:

T (s) =
Y (s)

R(s)
=

k

Ts + 1
,

T : time constant,
k : DC gain

Impulse response: y(t) = L −1

{

k/T

s + 1/T

}

=
k

T
e

−t
T

Step response: y(t) = L −1

{

k

s(Ts + 1)

}

= k
(

1− e
−t
T

)

note: System takes five time constants to reach its final value.

Ramp response: y(t) = L −1

{

k

s2(Ts + 1)

}

= k
(

t − T + Te
−t
T

)

c(t)

0 2TT 4T3T t

1

T

c(t) = e
– (t /T)1

T

c(t)

1

0

0.632
A

B

T 2T 3T 4T t5T

Slope =

1

T c(t) = 1 – e
– (t /T)
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r(t)

c(t)

6T

4T

2T

T20 4T t6T

T

T

r(t) = t

c(t)

Steady-state
error
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Time Domain Analysis of First Order Systems
Effect of DC Gain and Time Constant

Step response of First Order System:

y(t) = L
−1

{

k

s(Ts + 1)

}

= k
(

1− e
−t
T

)

Effect of Time Constant

k = 10 and T = 1, 3, 5, 7
Effect of DC Gain

k = 1, 3, 5, 10 and T = 1
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Time Domain Analysis of First Order Systems
Example

Example

Impulse response of a first order system is given by: y(t) = 3
(

1− e−0.5 t
)

Find the system time
constant, DC gain, transfer function, and step response.

The Laplace transform of impulse response of a system is its the transfer function.

Therefore, this system transfer function is:

T (s) =
Y (s)

R(s)
= L

{

3
(

1− e−0.5 t
)}

=
3

s + 0.5
=

6

2 s + 1

DC gain k = 6, Time constant T = 2

step response:

y(t) = L
−1

{

6

2 s + 1

1

s

}

= L
−1

{

6

s
− 6

s + 0.5

}

= 6
(

1− e−0.5 t
)
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Time Domain Analysis of second Order Systems

Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of
responses that must be analyzed and described.

Varying a first-order system parameters (T ,K ) simply changes the speed and offset of the response

Changes in the parameters of a second-order system can change the form of the response.

A second-order system can display characteristics much like a first-order system or, depending on
component values, display damped or pure oscillations for its transient response.
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Time Domain Analysis of second Order Systems

−+
R(s)

G (s) =
ω2
n

s (s + 2ξ ωn)

Y(s)

Most commonly used time domain performance measures refer to a 2nd order system:

Y (s)

R(s)
=

ω2
n

s2 + 2ξωn s + ω2
n

ωn undamped natural frequency
ξ damping ratio

ξ is a measure of the degree of resistance to change in the system output.

ωn is the frequency of oscillation of the system without damping.

The performance of a control system is usually characterized by its step response.
◮ step input is easy to generate and gives the system a nonzero steady-state condition, which can be

measured.

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 14 / 26



Time Domain Analysis of second Order Systems

Y (s)

R(s)
=

ω2
n

s2 + 2ξωn s + ω2
n

System Poles: s1,2 = −ξωn ± ωn

√

ξ2 − 1

jv

jvd

vn

s

b

zvn

–s

vn  1 – z2

0

Depending upon the value of ξ, a second-order system can be set into one of the four categories:
1 Overdamped: the system has two real distinct poles (ξ > 1).
2 Underdamped: the system has two complex conjugate poles (0 < ξ < 1)
3 Critically damped: the system has two real repeated poles (ξ = 1).
4 Undamped: the system has two pure complex poles (ξ = 0)

-a-b-c δ

jω

-a-b-c δ

jω

-a-b-c δ

jω

-a-b-c
δ

jω
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Step Response of second Order Systems

Y (s)

R(s)
=

ω2
n

s2 + 2ξωn s + ω2
n

for unit-step input R(s) =
1

s

Y (s) =
ω2
n

s2 + 2ξωn s + ω2
n

R(s) =
ω2
n

s (s2 + 2ξωn s + ω2
n)

=
1

s
− s + 2ξωn

(s + ξωn)
2
+ ω2

n (1− ξ2)
=

1

s
− s + 2ξωn

(s + ξωn)
2
+ ω2

d

y(t) = L
−1{Y (s)}

= 1− 1
√

1− ξ2
e−ξωnt sin

(

ωn

√

1− ξ2 t + φ
)

φ = tan−1

√

1− ξ2

ξ
0 < ξ < 1, 0 < φ <

π

2
,

ωd = ωn

√

1− ξ2 damped natural frequency

Unit-step response of overdamped and undamped Systems are left as exercise to you.
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Time domain specifications

The typical response of a 2nd order system when excited with a unit step input
c(t)

0.5

1

0

Allowable tolerance

Mp

td

t

0.05
or

0.02

tr

tp

ts

In this response, the performance indices are usually defined: rise time; peak time; settling time;

maximum overshoot; and steady-state error.
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Time domain specifications
Rise time (Tr )

c(t)

0.5

1

0

Allowable tolerance

Mp

td

t

0.05
or

0.02

tr

tp

ts

time required for the response to go from 0 to 100% of its final value.
a measure of speed of response (smaller rise time ⇒ faster response)

Tr =
π − β

ωd

, β = tan−1 ωd

ξωn

, ωd = ωn

√

1− ξ2
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Time domain specifications
Peak time (Tp)

c(t)

0.5

1

0

Allowable tolerance

Mp

td

t

0.05
or

0.02

tr

tp

ts

time required for the response to reach its peak value.
response is faster when peak time is smaller, but with higher overshoot.

Tp =
π

ωd
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Time domain specifications
Settling time (Ts)

c(t)

0.5

1

0

Allowable tolerance

Mp

td

t

0.05
or

0.02

tr

tp

ts

time required for response to reach and stay within a range (2 or 5%) about final value.

Ts =
3

ξωn

(for 5%) Ts =
4

ξωn

(for 2%)
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Time domain specifications
Percent Overshoot (Mp)

c(t)

0.5

1

0

Allowable tolerance

Mp

td

t

0.05
or

0.02

tr

tp

ts

The percent overshoot is defined as:

Mp =
ym − yss

yss − y0
× 100%,

y0 initial, ym maximum, and yss is steady state (final) values of the step response, respectively.
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Time domain specifications
Percent Overshoot (Mp)

For 2nd order system, the percent overshoot is calculated
as:

Mp = exp(−ξπ/
√

1− ξ2)

The amount of overshoot depends on the damping ratio
(ξ) and directly indicates the relative stability of the
system.

◮ The lower is the damping ratio, the higher the is
maximum overshoot.
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The steady-state error (ess)

difference between the reference input and the output response at steady-state.

Small ess is required in most control systems. However, in some systems such as position control, it
is important to have zero ess .

ess can be found using the final value theorem:
If the Laplace transform of the output is Y (s), then final (steady-state) value is given by:

yss = lim
t→∞

y(t) = lim
s→0

sY (s)

Hence, for a unit step input, ess is given as:

ess = 1− lim
s→0

sY (s)
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Time domain specifications

Example

Determine the step response performance indices of the system with the following closed-loop transfer
function:

Y (s)

R(s)
=

1

s2 + s + 1

Comparing the given system with the standard 2nd order transfer function:

Y (s)

R(s)
=

ω2
n

s2 + 2ζωns + ω2
n

We find that ωn = 1 rad/s and ξ = 0.5 . Thus, the damped natural frequency is:

ωd = ωn

√

1− ξ2 = 0.866
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Time domain specifications
Solution of Example

percent overshoot is:

Mp = e−ξπ/
√

1−ξ2 = 0.16 = 16%

peak time is:

Tp =
π

ωd

= 3.627

β = tan−1 ωd

ξωn

= 1.047,

Tr =
π − β

ωd

=
π − 1.047

0.866
= 2.42 sec,

Ts =
4

ξωn

= 8 sec,

ess = 1− lim
s→0

sY (s) = 1− lim
s→0

s
1

s(s2 + s + 1)
= 0
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Time domain specifications

As noticed, the step response performance indices are functions of (ξ, ωn).
Also (ξ, ωn) determine system poles:

s = −ξωn ± jωn

√

1− ξ2

Therefore, the response of a system is determined by the position of its poles.

placing the closed-loop poles at good locations, we can shape the response of the system and achieve
desired time response characteristics.

Although the previous analysis is conducted for 2nd order continuous-time system, the approach is
also applicable for higher-order systems.
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Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.

Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg
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