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Lecture: 4
Transient and Steady-State Response Analyses

@ Time Domain Analysis of Control systems

» General linear systems analysis
> Responses to different test signals

@ First Order Dynamical Systems

@ Second Order Dynamical Systems
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Order and Type of a system

Order of the system
o Consider a system defined by the transfer function:
T(S) _ Y(S) _ s™+ bmflsm_1 + -+ by
U(s) s"+ap_15" 4+ ag

@ The order of this system is n which is defined by the highest power for s in the denominator.

The system type Number

@ It is defined as the number of poles at the origin of the open loop transfer function G(s)H(s).

o Consider the open loop transfer function of a system as :

Y(s) s+ bp1s™ 4+ by
B s (s"+ap_18" 14+ ag)
@ The system of type c and has an order of n+ c.
50
(s+1)(s+4)
10s% + 3
G(s)H(s) = 52(3s* 4+ 253 4+ 52 + 45+ 3)
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= System of type 2



Time Domain Analysis

In time-domain analysis the response of a dynamic system to an input is expressed as a function of time.J

input error manipulation dislurlcances output

feedback

@ It is possible to compute the time response of a system if the nature of input and the
mathematical model of the system are known.

> Usually, the input signals to control systems are not known fully ahead of time.
» For example, in a radar tracking system, the position and the speed of the target to be tracked may
vary in a random fashion.

o It is therefore difficult to express the actual input signals mathematically by simple equations.
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Time Domain Analysis
Standard Test Signals

@ analyze and characterize input-output behavior

» Simple idea: want to know how your system is performing?
> excite it with different test inputs = study the response

Standard Test Signals
@ The characteristics of actual input signals are:

> a sudden shock, a sudden change, a constant velocity, and constant acceleration.
» another standard signal of great importance is a sinusoidal signal.

@ The dynamic behavior of a system is therefore judged and compared under application of these
standard test signals
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Standard Test Signals

o Impulse input: §(t), for a sudden shock:
A, fort=0
é(t)y=<"" = R(s) = Z{(t)} = A
(1 {O’ 20 = RS = 200(0))

o Step input: u(t), characterizes system ability to track sudden input changes:
A, fort>0 A
t)=<¢" T = U(s) = Lu(t) = —
() {0’ ot s Us) = L) = 2

o Ramp input: r(t), characterizes system ability to track varying input with
aconstant velocity

At, fort>0 A
t) = ’ - R(s) = Ar(t)} = =
r(t) {07 o R = L) = 5
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Standard Test Signals

o Parabolic input p(t) imitates the constant acceleration characteristic of
actual input signal.

AL for t >0 A
t)y=¢ 2~ = P(s) =Z{p(t)} = =
p(t) {0’ o = P = e} = 5

@ Why are these important? How is this useful? — Relationship between them:

unit-impulse response  unit-step response unit-ramp response

2y =T(s) L= ey =T

52
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Time Domain Analysis

Example
Example
i i it | R(s) 1[Y(s)
Find the response of the following system to unit impulse, @_} G(s) = =
step, and ramp inputs s
o First, we find the overall transfer function, T(s) T
@ since y(t) = L YY(s)} = L YT(s)R(s)}, then:
Input r(t) Rf::ponse y(t) R(s) N Y(s)
o(t) e
— ()= ——
u(t) =1t 1-—et s+1
u(t)=t t—1+et
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Transient and Steady State Responses

@ Any output for linear system is decomposed of: y(t) = yss(t) + yer(t)

Step Response

o yss(t): stead-state (forced) response — signifies the system'’s 0.4
ability to eventually track input signals after few seconds

o y;(t): transient (natural) response — path the output took to
reach SS

> Overly oscillatory y:(t) is usually bad for systems. Why?
> Slow transient response is typically undesirable. Why?

Amplitude

Time (sec)
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Time Domain Analysis of First Order Systems

@ First order systems are characterized by:

T(s) = Y(s) __ Kk T : time constant,
R(s) Ts+1’ k : DC gain
{
k/T k —: g
o Impulse response: y(t) = fl{:H—/l/T} = zeT v |
I

\,
2
&
4

(]

k ¢
: e -y = —eT 0
Step response: y(t) = {s( Ter 1)} k (1 e ) )

note: System takes five time constants to reach its final value.

k —t
R . — -1) __ ~ =t
amp response: y(t) =< {52( = 1)} =k (t— ] + TeT )
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Time Domain Analysis of First Order Systems
Effect of DC Gain and Time Constant

Step response of First Order System:

y(t) = f_l{s(Tsk—i—l)} = k (1 - e%’)

Effect of Time Constant Effect of DC Gain
k=10and T =1,3,5,7 k=1,3,5,10and T =1
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Time Domain Analysis of First Order Systems
Example
Example

Impulse response of a first order system is given by: y(t) =3 (1 — e %) Find the system time
constant, DC gain, transfer function, and step response.

@ The Laplace transform of impulse response of a system is its the transfer function.
@ Therefore, this system transfer function is:

_Y(s)
R(s)

@ DC gain k =6, Time constant T =2

@ step response:
6 1 6 6
_ -1 Ll o-1)o _ _ 05t
(1) =2 {2s+ls} < {s s+0.5} 6(1—e )

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering

3.6
s+05 2s+1

T(s)

=2{31-e""} =
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Time Domain Analysis of second Order Systems

@ Compared to the simplicity of a first-order system, a second-order system exhibits a wide range of
responses that must be analyzed and described.

@ Varying a first-order system parameters (T, K) simply changes the speed and offset of the response
@ Changes in the parameters of a second-order system can change the form of the response.

@ A second-order system can display characteristics much like a first-order system or, depending on
component values, display damped or pure oscillations for its transient response.
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Time Domain Analysis of second Order Systems

R—(SL@ET — G(s) = s(sfzgwn) M

@ Most commonly used time domain performance measures refer to a 2" order system:

2
Y(S) “h wp  undamped natural frequency
R(s) 2 + 26w, s+ w,27 13 damping ratio

@ ¢ is a measure of the degree of resistance to change in the system output.
@ w, is the frequency of oscillation of the system without damping.
@ The performance of a control system is usually characterized by its step response.

> step input is easy to generate and gives the system a nonzero steady-state condition, which can be
measured.
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Time Domain Analysis of second Order Systems

jo
Y (s) w? ,
B~ 213 5 X === Je
(s) s24 28w, s+ w? e 37
B
@ System Poles: 10 = —§w, £ wp\/E% — 1 -0 |0 4
—| {w, [~

@ Depending upon the value of £, a second-order system can be set into one of the four categories:
@ Overdamped: the system has two real distinct poles (¢ > 1).
@ Underdamped: the system has two complex conjugate poles (0 < & < 1)
@ Critically damped: the system has two real repeated poles (£ = 1).
© Undamped: the system has two pure complex poles (£ = 0)

’ jw % ’ jw jw +jw

< b -a 6 < b -a 5 b -a 6§ ¢ b - % s

X
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Step Response of second Order Systems

Y(s) w? . : 1
R(s) =75 TN for unit-step input R(s) = <
w? w3
Y(s) = . R(s) = -
(s) $2 + 28wp s+ w? () s (% + 28w, s + w?)
1 s+ 28w, 1 s+ 28w,

S (sHEwn)Fw2(1—€) 5 (s+&wn)’ +w?
y(t) = L7 H{Y(s)}
_1- 11_52 e €tsin (wn/T— € t 4 )
bt YIZE g 0<¢><g,

3
wyg = wpy/ 1 — &2 damped natural frequency

Unit-step response of overdamped and undamped Systems are left as exercise to you.
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Time domain specifications

@ The typical response of a 2"¢ order system when excited with a unit step input

c(?)
Allowable tolerance

1 Mgi/‘%\ 7\7&& ,,,,,,,,,,,,,, ¥ $/0£5

\/7""""""7;%70402

I
I
I
I
I
i
05— 1
|
I
I
I
I
|

@ In this response, the performance indices are usually defined: rise time; peak time; settling time;
maximum overshoot; and steady-state error.
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Time domain specifications
Rise time (T;)

c(t)
Allowable tolerance

1 W\ &i ,,,,,,,,,,,,,, $,L/0£5
\'/(77 777777777777 ﬁ/o.oz

l
I
I
I
|
osf—f |
|
|
|
|
|
|

@ time required for the response to go from 0 to 100% of its final value.
@ a measure of speed of response (smaller rise time = faster response)

Tt A S s -

Wd gwn,
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Time domain specifications
Peak time (Tp)

()

Allowable tolerance

l
I
I
I
|
osf—f |
|
|
|
|
|
|

@ time required for the response to reach its peak value.

@ response is faster when peak time is smaller, but with higher overshoot.

T,= =

Wd
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Time domain specifications

Settling time (T5)

c(t)

0.5

@ time required for response to reach and stay within a range (2 or 5%) about final value.

Allowable tolerance

Wl /N L pos
N——-

3
To=——
§

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

(for 5%) Ts= (for 2%)

4
§wn

Automatic Control Engineering

20 / 26



Time domain specifications
Percent Overshoot (Mp)

c(t)

Allowable tolerance

I
I
I
I
I
|
05 |-——4 |
!
I
I
I
I
‘

@ The percent overshoot is defined as:
M. = Ym — Vs x 100%,
Yss — Y0
Yo initial, y, maximum, and y is steady state (final) values of the step response, respectively.
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Time domain specifications
Percent Overshoot (Mp)

@ For 2" order system, the percent overshoot is calculated

as:
M, = exp(—ém//T — €2)

@ The amount of overshoot depends on the damping ratio
(&) and directly indicates the relative stability of the
system.

> The lower is the damping ratio, the higher the is
maximum overshoot.
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The steady-state error (ey)

o difference between the reference input and the output response at steady-state.

@ Small ey is required in most control systems. However, in some systems such as position control, it
is important to have zero egs.

@ e, can be found using the final value theorem:
If the Laplace transform of the output is Y(s), then final (steady-state) value is given by:

Yss = tlngOY(t) = S!I_rpOSY(S)
@ Hence, for a unit step input, es is given as:

ess =1 — lim sY(s)

s—0
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Time domain specifications

Example
Determine the step response performance indices of the system with the following closed-loop transfer

function:
Y(s) 1
R(s) s2+s+1

o Comparing the given system with the standard 2" order transfer function:

Y(s) w?

_ n

R(s) 2+ 2(wns + w?

o We find that w, =1 rad/s and £ = 0.5 . Thus, the damped natural frequency is:

wy = wpy/1 — €2 = 0.866

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 24 /26



Time domain specifications

Solution of Example

@ percent overshoot is:

M, = e=¢7/V1=¢ = 0.16 = 16%

@ peak time is:

T, = =3627
Wy
b= tan_lﬁ = 1.047,
Ewn
T—08 7 —1.047
T, = = =242
Sy 0.866 S€C
T. = =8
= sec,
. ) 1
€ss = 1 — SIl_rQ)SY(S) = 1 — !L%Sm = O
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Time domain specifications

@ As noticed, the step response performance indices are functions of (&, wp).
Also (&,w,) determine system poles:

s = —Ewp + jwn/1— €2

@ Therefore, the response of a system is determined by the position of its poles.

placing the closed-loop poles at good locations, we can shape the response of the system and achieve
desired time response characteristics.

@ Although the previous analysis is conducted for 2"¢ order continuous-time system, the approach is
also applicable for higher-order systems.
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Thanks for your attention.

Questions?
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