CSE302 Automatic Control Engineering

Lecture 3: Mathematical Modeling of Physical Systems

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 3

Mathematical Modeling of Physical Systems

- Modeling of Electrical Systems
- Modeling of Mechanical Systems
- Modeling of Electromechanical Systems

Mathematical Modeling of Physical Systems

Modeling

the process of representing the behavior of a real system by a collection of mathematical equations and logic.

- Models are cause-and-effect structures
 - they accept external information and process it with their logic and equations to produce one or more outputs.
 - Parameter is a fixed-value unit of information
 - Signal is a changing-unit of information
- Models can be text-based programming or pictorial representations

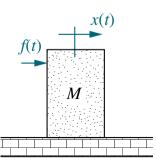
Types of Systems

- Static System: If a system does not change with time.
- **Dynamic System**: if its current output depends on the past history and the present values of the input variables.

$$y(t) = \Phi[u(\tau)], \quad 0 \le \tau \le t$$

- Physical laws are used to predict the behavior (both static and dynamic) of systems.
 - ► Electrical engineering relies on Ohm and Kirchoff laws
 - Mechanical engineering on Newton laws
 - Electromagnetics on Faraday and Lenz laws
 - Fluids on continuity and Bernoulli laws
- **Example**: The displacement x(t) of a a moving mass M due to an external force f(t) can be modeled as:

Force = Mass × Acceleration
$$f(t) = M a = M \frac{d^2x(t)}{dt^2}$$



Modeling of Electrical Systems

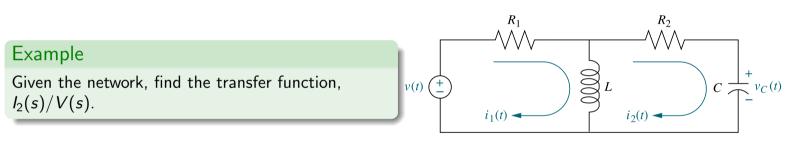
Voltage-current, voltage-charge, and impedance relationships for basic electrical components

Component	Voltage-current	Current-voltage	Voltage-charge	Impedance $Z(s) = V(s)/I(s)$	Admittance Y(s) = I(s)/V(s)
(Capacitor	$v(t) = \frac{1}{C} \int_0^1 i(\tau) d\tau$	$i(t) = C \frac{dv(t)}{dt}$	$v(t) = \frac{1}{C}q(t)$	$\frac{1}{Cs}$	Cs
-////- Resistor	v(t) = Ri(t)	$i(t) = \frac{1}{R}v(t)$	$v(t) = R \frac{dq(t)}{dt}$	R	$\frac{1}{R} = G$
Inductor	$v(t) = L \frac{di(t)}{dt}$	$i(t) = \frac{1}{L} \int_0^1 v(\tau) d\tau$	$v(t) = L \frac{d^2 q(t)}{dt^2}$	Ls	$\frac{1}{Ls}$

v(t) - V (volts), i(t) - A (amps), q(t) - Q (coulombs), C - F (farads), $R - \Omega$ (ohms), $G - \Omega$ (mhos), L - H (henries).

Modeling of Electrical Systems

Example



- Laplace transform of circuit variables, assuming zero initial conditions is shown next.
- summing voltages around each mesh:

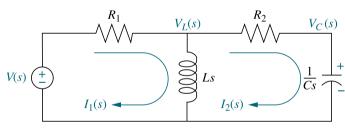
$$R_1 I_1(s) + Ls \ [I_1(s) - I_2(s)] = V(s)$$

is $[I_2(s) - I_1(s)] + R_2 I_2(s) + rac{1}{Cs} I_2(s) = 0$

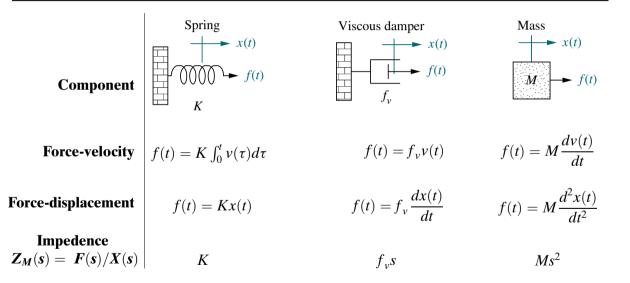
• solving for $I_2(s)$ gives:

L

$$G(s) = rac{l_2(s)}{V(s)} = rac{LC \ s^2}{(R_1 + R_2)LC \ s^2 + (R_1R_2C + L)s + R_1}$$



Force-velocity, force-displacement, and impedance **translational** relationships for basic mechanical components

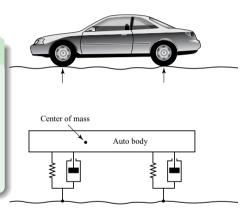


Example

Example

a schematic diagram of an automobile suspension system is shown next. A very simplified version of the suspension system is also given.

Assuming that the motion x_i at point P is the input to the system and the vertical motion x_o of the body is the output, obtain the transfer function $X_o(s)/X_i(s)$



*

^{*}The motion of this system consists of a translational motion of the center of mass and a rotational motion about the center of mass. Mathematical modeling of the complete system is quite complicated.

Example

• The equation of motion for the system is:

 $m\ddot{x}_{o}(t) + b\left[\dot{x}_{o}(t) - \dot{x}_{i}(t)\right] + k\left[x_{o}(t) - x_{i}(t)\right] = 0$

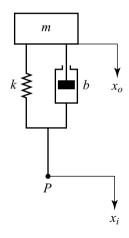
• Taking the Laplace transform of the equation of motion^a, we obtain:

$$m s^{2} X_{o}(s) + b s [X_{o}(s) - X_{i}(s)] + k [X_{o}(s) - X_{i}(s)] = 0$$

 $m s^{2} X_{o}(s) + b s X_{o}(s) + k X_{o}(s) = b s X_{i}(s) + k X_{o}(s) - X_{i}(s)$

• Hence the transfer function Xo(s)/Xi(s) is given by:

$$\frac{X_o(s)}{X_i(s)} = \frac{bs+k}{ms2+bs+k}$$

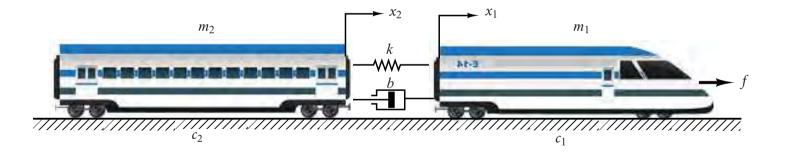


^aassuming zero initial conditions

Example

Example

Consider the two carriage train system shown. obtain the transfer function $X_1(s)/F(s)$

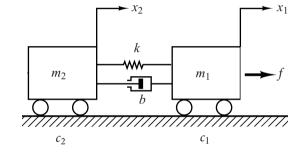


Example

- The two carriage train is schematically represented as:
- Forces acting on carriages 1 and 2, respectively:

$$m_1 \ddot{x_1} + b(\dot{x_1} - \dot{x_2}) + k(x_1 - x_2) + c_1 \dot{x_1} = f$$

$$m_2 \ddot{x_2} + b(\dot{x_1} - \dot{x_2}) + k(x_1 - x_2) + c_2 \dot{x_2} = 0$$



• Taking Laplace transform and rearranging:

$$\begin{bmatrix} m_1 s^2 + (b+c_1)s + k \end{bmatrix} X_1(s) - \begin{bmatrix} b s + k \end{bmatrix} X_2(s) = F(s) - \begin{bmatrix} b s + k \end{bmatrix} X_1(s) + \begin{bmatrix} m_2 s^2 + (b+c_2)s + k \end{bmatrix} X_2(s) = 0$$

Example

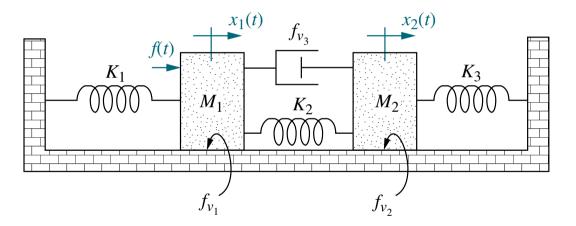
• Solving the previous two equations, gives transfer function (with F as input and X_1 as output):

$$\frac{X_1(s)}{F(s)} = \frac{m_2 s^2 + (b + c_2)s + k}{m_1 m_2 s^4 + m_1 (2b + c_1 + c_2)s^3 + [k(m_1 + m_2) + b(c_1 + c_2) + c_1 c_2]s^2 + k(c_1 + c_2)s}$$

• Note: Transfer function is a frequency domain equation that gives the relationship between a **specific input** to a specific output

Example

Find the transfer function, $X_2(s)/F(s)$, for the system:



Note that friction shown here is viscous friction. Thus, fv_1 and fv_2 are not Coulomb friction, but arise because of a **viscous** interface.

Rotational Mechanical System

Torque-angular velocity, torque-angular displacement, and impedance **rotational** relationships for basic mechanical components

Component	Torque-angular velocity	Torque-angular displacement	Impedence $Z_M(s) = T(s)/\theta(s)$
$ \begin{array}{c} T(t) \ \theta(t) \\ \hline Spring \\ K \end{array} $	$T(t) = K \int_0^t \omega(\tau) d\tau$	$T(t) = K\theta(t)$	Κ
Viscous $T(t) \theta(t)$ damper D	$T(t) = D\omega(t)$	$T(t) = D \frac{d\theta(t)}{dt}$	Ds
$T(t) \theta(t)$ Inertia	$T(t) = J \frac{d\omega(t)}{dt}$	$T(t) = J \frac{d^2 \theta(t)}{dt^2}$	Js ²

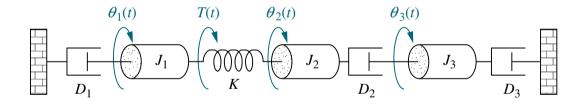
T(t) – N-m (newton-meters), $\theta(t)$ – rad (radians), $\omega(t)$ – rad/s(radians/second), K – N-m/rad(newton-meters/radian), D – N-m-s/rad (newton-meters-seconds/radian). J – kg-m²(kilograms-meters² – newton-meters-seconds²/radian).

Automatic Control Engineering

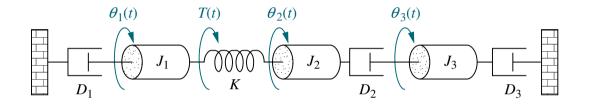
Rotational Mechanical System Example

Example

Write the Laplace transform of the equations of motion for the system shown



Rotational Mechanical System Example



$$egin{aligned} & \left(J_1s^2 + D_1s + K
ight) \; heta_1(s) - K heta_2(s) - 0 \; heta_3(s) = T(s) \ & -K heta_1(s) + \left(J2s^2 + D_2s + K
ight) heta_2(s) - D_2 \; s \; heta_3(s) = 0 \ & -0 \; heta_1(s) - D_2s heta_2(s) + \left(J_3s^2 + D_3s + D_2s
ight) heta_3(s) = 0 \end{aligned}$$

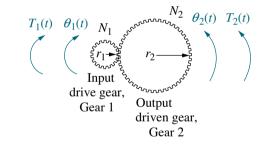
Rotational Mechanical System Gears

- gears allow to match the drive system and the load
- a trade-off between speed and torque
- mechanical impedances is reflected through gear trains by:

 $\left(\frac{\text{Number of teeth of gear on destination shaft}}{\text{Number of teeth of gear on source shaft}}\right)^2$

• interaction between two gears:

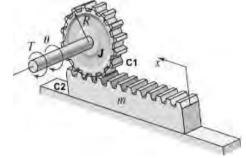
$$\frac{\theta_2}{\theta_1} = \frac{r_1}{r_2} = \frac{N_1}{N_2}, \qquad \frac{T_2}{T_1} = \frac{\theta_1}{\theta_2} = \frac{N_2}{N_1}, \qquad \frac{Z_2}{Z_1} = \left(\frac{N_2}{N_1}\right)^2$$



Rotational-Transitional System

- with rack and pinion system, the **rotational** motion is transformed **into transitional** motion.
- Relation between input rotational torque and output linear velocity[§]:

$$T_{in} - T_{out} = J \frac{d\omega}{dt} + c_1 \omega \qquad \text{rotational equation}$$
$$F - c_2 v = m \frac{dv}{dt} \qquad \text{transitional equation}$$
$$T_{out} = r F, \quad \omega = v/r$$

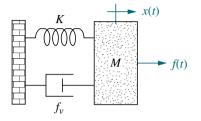


• manipulating the rotational and transitional equations, we get:

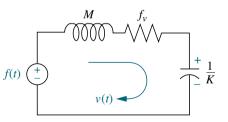
$$T_{in} = \left(\frac{c_1}{r} + c_2 r\right) v + \left(\frac{J}{r} + m r\right) \frac{dv}{dt}$$

[§]For simplicity, the spring effects are ignored

quantity		equivalent		
mass	М	inductor	M henries	
viscous damper	f_{v}	resistor	<i>f_v</i> ohms	
spring	k	capacitor	1/k farads	
applied force	f(t)	voltage source	f(t)	
velocity	v(t)	mesh current	v(t)	



	Flow Variable (FV)	Potential Variable (PV)	
Electrical	Current	Voltage	
Mech. Transitional	Force	Velocity	
Mech. Rotational	Torque	Angular Velocity	
Hydraulic	Volumetric Flow Rate	Pressure	
Pneumatic	Mass Flow Rate	Pressure	
Thermal	Heat Flow Rate	Temperature	

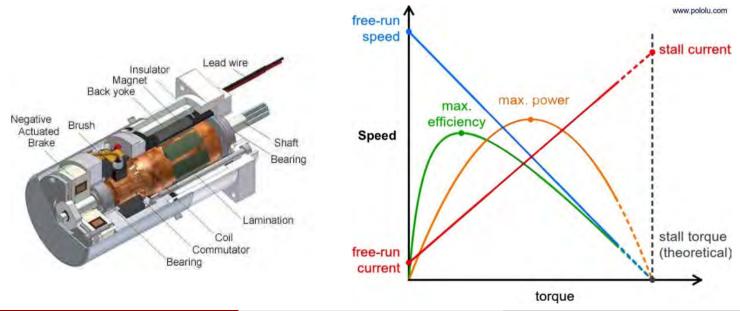


- Based on electrical analogies, we can derive the fundamental equations of systems in five disciplines of engineering:
 - ► Electrical, Mechanical, Electromagnetic, Fluid, and Thermal.
- By using this analogy method to first derive the fundamental relationships in a system, the equations then can be represented in block diagram form, allowing secondary and nonlinear effects to be added.
 - ► This two-step approach is especially useful when modeling large coupled systems.

- Combine electrical and mechanical processes.
- Devices carrying out electrical operations using moving parts are known as electromechanical.
 - ► Relays, Solenoids, Electric Motors, Electric Generators, Switches, etc.

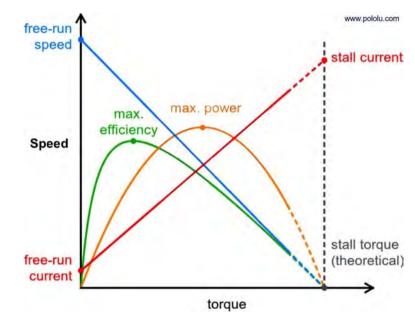
DC Motors

- Speed control through variable voltage applied to the armature terminals
- each motor has a specific Torque/Speed curve and Power curve.

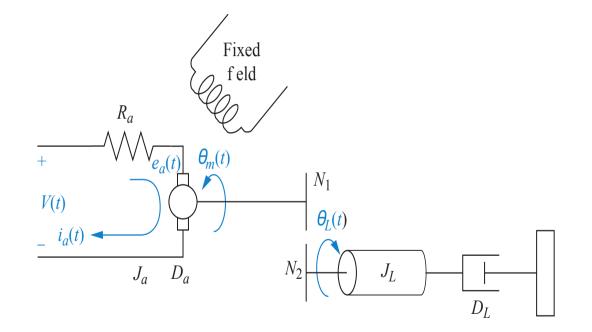


DC Motors

- Torque is **inversely** proportional to output shaft speed.
- Motor characteristics are frequently given as two points on this graph:
 - stall torque: the point on at which the torque is maximum, but the shaft is not rotating.
 - no load speed: maximum output speed of the motor.



DC Motor with Load



• for a DC motor, mechanical and electrical equations are:

$$V = R \ i + L \frac{di}{dt} + e_a \tag{1}$$

$$e_b = K_t \ \omega$$
 (2) V suppli
 ω rotor

(3)

$$T=K_t\;i=J_mrac{d\omega}{dt}+D_m\;\omega$$

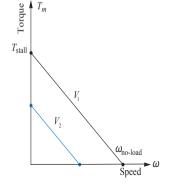
 $\begin{array}{ll} T & \text{motor torque} \\ K_t & \text{torque constant} \\ i & \text{current,} \\ V & \text{supplied voltage,} \\ \omega & \text{rotor speed,} \\ e_b & \text{back-emf} \left(e_b = K_e \; \omega \right), \\ R, L & \text{resistance and induction} \end{array}$

• For a fixed voltage, torque-speed curves are derived from (1) & (3):

$$T = \frac{k_t}{R} \left(V - K_t \, \omega \right) = \frac{k_t}{R} \, V - k_m^2 \omega$$

• $K_m = k_t / \sqrt{R}$ is the **motor constant**, [numerically, kt = ke]

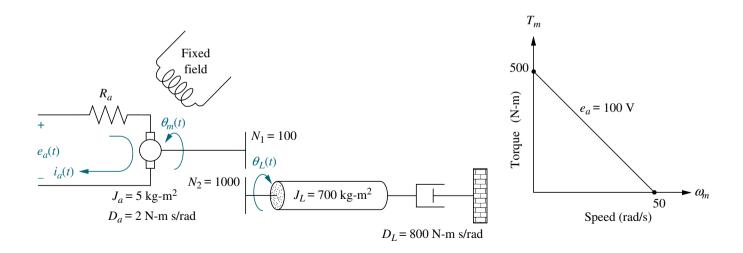
- slope of the torque-speed curves is $-K_m^2$
- voltage-controlled DC motor has inherent damping in its mechanical behavior
- \bullet torque increases in proportion to applied voltage and reduces as ω increases.



Example

Example

Given the DC motor with load system and torque-speed curve, find the transfer function, $\theta_L(s)/V(s)$.



Example

• to get the transfer function, we combine Laplace transforms of (1) through (3) and simplifying:

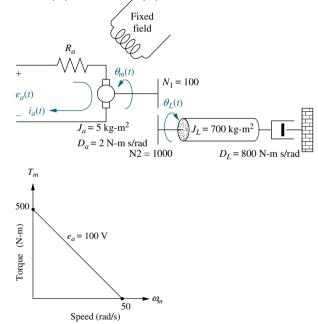
$$\frac{\theta_m(s)}{V(s)} = \frac{k_t/(R_a J_m)}{s \left[s + \frac{1}{J_m} \left(D_m + \frac{K_t K_b}{R_a}\right)\right]}$$

• total inertia and damping at motor armature:

$$J_m = J_a + J_L \left(\frac{N_1}{N_2}\right)^2 = 5 + 700 \left(\frac{1}{10}\right)^2 = 12$$
$$D_m = D_a + D_L \left(\frac{N_1}{N_2}\right)^2 = 2 + 800 \left(\frac{1}{10}\right)^2 = 10$$

• From the torque-speed curve:

$$T_{stall} = 500, \qquad \omega_{no-load} = 50, \qquad V = 100$$



Example

• Hence the electrical constants, K_t/R_a and K_b are:

$$\frac{Kt}{Ra} = \frac{Tstall}{V} = \frac{500}{100} = 5, \qquad Kb = \frac{V}{\omega_{no-load}} = \frac{100}{50} = 2$$

• Substituting system parameters into Eq.(5) yields:

$$\frac{\theta_m(s)}{V(s)} = \frac{5/12}{s\left[s + \frac{1}{12}(10 + 52)\right]} = \frac{0.417}{s(s + 1.667)}$$

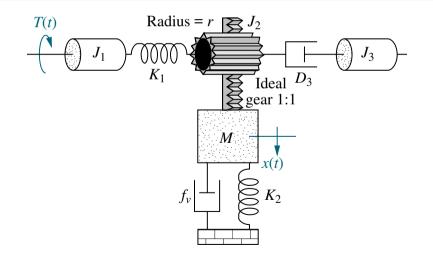
• to find the final transfer function (from the load-side, i.e. $\theta_L/V(s)$), we use the gear ratio, $N_1/N_2 = 1/10$, hence we get:

$$\frac{\theta_L(s)}{V(s)} = \frac{0.0417}{s(s+1.667)}$$

Example

Example

Given the combined translational and rotational system shown, find the transfer function, G(s) = X(s)/T(s).



Example

• Writing the equations of motion,

$$(J_1 \ s^2 + K_1) \ \theta_1(s) - K_1 \ \theta_2(s) = T(s)$$
$$-K_1 \ \theta_1(s) + (J_2 \ s^2 + D_3 \ s + K_1) \ \theta_2(s) + F(s) \ r - D_3 \ s \ \theta_3(s) = 0$$
$$-D_3 \ s \ \theta_2(s) + (J_2 \ s^2 + D_3 \ s) \ \theta_3(s) = 0$$

where F(s) is the opposing force on J_2 due to the translational member and r is the radius of J_2 . • for the translational member,

$$F(s) = (M s^{2} + f_{v} s + K_{2})X(s) = (M s^{2} + f_{v} s + K_{2}) r \theta(s)$$

Example

• Substituting F(s) back into the second equation of motion:

$$(J_1 \ s^2 + K_1) \ \theta_1(s) - K_1 \ \theta_2(s) = T(s) \ -K_1 \ \theta_1(s) + \left[(J_2 + M \ r^2) \ s^2 + (D_3 + f_v \ r^2) \ s + (K_1 + K_2 \ r^2) \right] \ \theta_2(s) - D_3 \ s \ \theta_3(s) = 0 \ -D_3 \ s \ \theta_2(s) + (J_2 \ s^2 + D_3 \ s) \ \theta_3(s) = 0$$

Note: the translational components were **reflected** as equivalent rotational components by the **square of the radius**.

• Solving for $\theta_2(s)$,

$$\theta_2(s) = \frac{K_1(J_3s^2 + D_3s)T(s)}{\Delta}$$

 Δ is the determinant formed from the coefficients of the three equations of motion. • Since $X(s) = r\theta_2(s)$, then:

$$\frac{X(s)}{T(s)} = \frac{r K_1(J_3 s^2 + D_3 s)}{\Delta}$$

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.