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Lecture: 3

Mathematical Modeling of Physical Systems

Modeling of Electrical Systems

Modeling of Mechanical Systems

Modeling of Electromechanical Systems
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Mathematical Modeling of Physical Systems

Modeling

the process of representing the behavior of a real system by a collection of mathematical equations and
logic.

Models are cause-and-effect structures
! they accept external information and process it with their logic and equations to produce one or more

outputs.
! Parameter is a fixed-value unit of information
! Signal is a changing-unit of information

Models can be text-based programming or pictorial representations
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Types of Systems

Static System: If a system does not change with time.
Dynamic System: if its current output depends on the past history and the present values of the
input variables.

y(t) = Φ[u(τ)], 0 ≤ τ ≤ t

Physical laws are used to predict the behavior (both static and dynamic) of systems.
! Electrical engineering relies on Ohm and Kirchoff laws
! Mechanical engineering on Newton laws
! Electromagnetics on Faraday and Lenz laws
! Fluids on continuity and Bernoulli laws

Example: The displacement x(t) of a a moving mass M due to an external force f (t) can be
modeled as:

Force = Mass × Acceleration

f (t) = M a = M
d2x(t)

dt2

f(t)

M

x(t)
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Modeling of Electrical Systems

Voltage-current, voltage-charge, and impedance relationships for basic electrical components

Component Voltage-current Current-voltage Voltage-charge
Impedance

Z(s) ¼ V(s)=I(s)
Admittance

Y(s) ¼ I(s)=V(s)

Capacitor
v ðtÞ ¼

1

C

Z 1

0
iðtÞdt iðtÞ ¼ C

dv ðtÞ

dt
v ðtÞ ¼

1

C
qðtÞ 1

Cs
Cs

Resistor

v ðtÞ ¼ RiðtÞ iðtÞ ¼
1

R
v ðtÞ v ðtÞ ¼ R

dqðtÞ

dt
R

1

R
¼ G

Inductor
v ðtÞ ¼ L

diðtÞ

dt
iðtÞ ¼

1

L

Z 1

0
v ðtÞdt v ðtÞ ¼ L

d2 qðtÞ

dt2
Ls 1

Ls

�v (t)�$ �V�(volts),�i(t)�$ �A�(amps),�q(t)�$ �Q�(coulombs),�C�$ �F�(farads),�R�$ �V�(ohms),�G�$ �V�(mhos),�L�$ �H�(henries).
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Modeling of Electrical Systems
Example

Example

Given the network, find the transfer function,
I2(s)/V (s).
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Modeling of Electrical Systems
Example

Laplace transform of circuit variables, assuming zero initial conditions is shown next.

summing voltages around each mesh:

R1I1(s) + Ls [I1(s)− I2(s)] = V (s)

Ls [I2(s)− I1(s)] + R2I2(s) +
1

Cs
I2(s) = 0

solving for I2(s) gives:

G (s) =
I2(s)

V (s)
=

LC s2

(R1 + R2)LC s2 + (R1R2C + L)s + R1
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Modeling of Mechanical Systems

Force-velocity, force-displacement, and impedance translational relationships for basic mechanical
components

Component

Force-velocity

Force-displacement

Impedence
ZMðsÞ ¼ �FðsÞ=XðsÞ

K

Spring

x(t)

f (t)

f ðtÞ ¼ K
R t

0 v ðtÞdt

f ðtÞ ¼ Kx ðtÞ

K

fv

Viscous damper

x(t)

f (t)

f ðtÞ ¼ f v v ðtÞ

f ðtÞ ¼ f v
dx ðtÞ

dt

f�v s

Mass

x(t)

f (t)M

f ðtÞ ¼ M
dv ðtÞ

dt

f ðtÞ ¼ M
d2x ðtÞ

dt2

Ms2
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Modeling of Mechanical Systems
Example

Example

a schematic diagram of an automobile suspension system is shown next.
A very simplified version of the suspension system is also given.

Assuming that the motion xi at point P is the input to the system and
the vertical motion xo of the body is the output, obtain the transfer
function Xo(s)/Xi (s)

Center of mass

Auto body

∗

∗The motion of this system consists of a translational motion of the center of mass and a rotational motion about the
center of mass. Mathematical modeling of the complete system is quite complicated.

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 9 / 32



Modeling of Mechanical Systems
Example

The equation of motion for the system is:

mẍo(t) + b [ẋo(t)− ẋi (t)] + k [xo(t)− xi (t)] = 0

Taking the Laplace transform of the equation of motiona, we obtain:

m s2 Xo(s) + b s [Xo(s)− Xi (s)] + k [Xo(s)− Xi (s)] = 0

m s2 Xo(s) + b sXo(s) + kXo(s) = b sXi (s) + kXo(s)− Xi (s)

Hence the transfer function Xo(s)/Xi(s) is given by:

Xo(s)

Xi (s)
=

bs + k

ms2 + bs + k

aassuming zero initial conditions

k

xi

b

P

xo

m

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 10 / 32



Modeling of Mechanical Systems
Example

Example

Consider the two carriage train system shown. obtain the transfer function X1(s)/F (s)

b

k

m1m2

Y1

G

Y2

D1
D�
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Modeling of Mechanical Systems
Example

The two carriage train is schematically represented as:

Forces acting on carriages 1 and 2, respectively:

m1ẍ1 + b(ẋ1 − ẋ2) + k(x1 − x2) + c1ẋ1 = f

m2ẍ2 + b(ẋ1 − ẋ2) + k(x1 − x2) + c2ẋ2 = 0
m1m2

k

x1

b

x2

G

D1D�

Taking Laplace transform and rearranging:

[

m1 s
2 + (b + c1)s + k

]

X1(s)− [b s + k]X2(s) = F (s)

− [b s + k]X1(s) +
[

m2 s
2 + (b + c2)s + k

]

X2(s) = 0
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Modeling of Mechanical Systems
Example

Solving the previous two equations, gives transfer function (with F as input and X1 as output):

X1(s)

F (s)
=

m2 s
2 + (b + c2)s + k

m1m2s4 +m1(2b + c1 + c2)s3 + [k(m1 +m2) + b(c1 + c2) + c1c2] s2 + k(c1 + c2)s

Note: Transfer function is a frequency domain equation that gives the relationship between a specific
input to a specific output
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Modeling of Mechanical Systems
Example

Find the transfer function, X2(s)/F (s), for the system:

K1 K3

f(t)
fv3

fv1
fv2

M1 M2K2

x1 (t) x2 (t)

Note that friction shown here is viscous friction. Thus, fv1 and fv2 are not Coulomb friction, but arise
because of a viscous interface.
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Modeling of Mechanical Systems
Rotational Mechanical System

Torque-angular velocity, torque-angular displacement, and impedance rotational relationships for basic
mechanical components

Component
Torque-angular

velocity
Torque-angular
displacement

Impedence
ZM(s) ¼ T(s)=u(s)

K

Spring

T(t)    (t)θ

TðtÞ ¼ K
R t

0 vðtÞdt TðtÞ ¼ KuðtÞ K

D

Viscous

damper
T(t)    (t)θ

TðtÞ ¼ DvðtÞ TðtÞ ¼ D
duðtÞ

dt
Ds

J

Inertia

T(t)    (t)θ

TðtÞ ¼ J
dvðtÞ

dt
TðtÞ ¼ J

d2
uðtÞ

dt2
Js2

TðtÞ $ � N-m ðnewton-metersÞ,� uðtÞ $ rad ðradiansÞ,�vðtÞ $ rad/sðradians/secondÞ,�K� $ �N-m/radðnewton- 
meters/radianÞ,� D� $ � N-m-s/rad� ðnewton-� meters-seconds/radianÞ.� J� $ � kg-m2 ðkilograms-meters2 � $ �
newton-meters-seconds2 /radianÞ.
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Modeling of Mechanical Systems
Rotational Mechanical System Example

Example

Write the Laplace transform of the equations of motion for the system shown

θ 1 (t) T(t) θ 2 (t) θ 3 (t)

D1
K D2 D3

J2J1 J3
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Modeling of Mechanical Systems
Rotational Mechanical System Example

θ 1 (t) T(t) θ 2 (t) θ 3 (t)

D1
K D2 D3

J2J1 J3

(

J1s
2 + D1s + K

)

θ1(s)− Kθ2(s)− 0 θ3(s) = T (s)

−Kθ1(s) + (J2s2 + D2s + K ) θ2(s)− D2 s θ3(s) = 0

−0 θ1(s)− D2sθ2(s) +
(

J3s
2 + D3s + D2s

)

θ3(s) = 0
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Modeling of Mechanical Systems
Rotational Mechanical System Gears

gears allow to match the drive system and the load

a trade–off between speed and torque

mechanical impedances is reflected through gear trains by:

(

Number of teeth of gear on destination shaft

Number of teeth of gear on source shaft

)2

interaction between two gears:

θ2
θ1

=
r1
r2

=
N1

N2
,

T2

T1
=

θ1
θ2

=
N2

N1
,

Z2

Z1
=

(

N2

N1

)2

r2

θ

Input
drive gear, 

Gear 1 Output
driven gear, 

Gear 2

r1

N1

N2
T1 (t) 1 (t) θ T2 (t)2 (t)
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Modeling of Mechanical Systems
Rotational-Transitional System

with rack and pinion system, the rotational motion is transformed into transitional motion.

Relation between input rotational torque and output linear velocity§:

Tin − Tout = J
dω

dt
+ c1 ω rotational equation

F − c2 v = m
dv

dt
transitional equation

Tout = r F , ω = v/r

manipulating the rotational and transitional equations, we get:

Tin =
(c1
r

+ c2 r
)

v +

(

J

r
+m r

)

dv

dt

§For simplicity, the spring effects are ignored
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Analogy Approach

quantity equivalent

mass M inductor M henries
viscous damper fv resistor fv ohms
spring k capacitor 1/k farads
applied force f (t) voltage source f (t)
velocity v(t) mesh current v(t)

Flow Variable (FV) Potential Variable (PV)
Electrical Current Voltage
Mech. Transitional Force Velocity
Mech. Rotational Torque Angular Velocity
Hydraulic Volumetric Flow Rate Pressure
Pneumatic Mass Flow Rate Pressure
Thermal Heat Flow Rate Temperature

+

fvM

–
f(t)

v(t)

1
K

f(t)

K

fv

x(t)

M

+
–
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Analogy Approach

Based on electrical analogies, we can derive the fundamental equations of systems in five disciplines
of engineering:

! Electrical, Mechanical, Electromagnetic, Fluid, and Thermal.

By using this analogy method to first derive the fundamental relationships in a system, the
equations then can be represented in block diagram form, allowing secondary and nonlinear effects
to be added.

! This two-step approach is especially useful when modeling large coupled systems.
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Electromechanical Systems

Combine electrical and mechanical processes.

Devices carrying out electrical operations using moving parts are known as electromechanical.

! Relays, Solenoids, Electric Motors, Electric Generators, Switches, etc.
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Electromechanical Systems
DC Motors

Speed control through variable voltage applied to the armature terminals
each motor has a specific Torque/Speed curve and Power curve.
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Electromechanical Systems
DC Motors

Torque is inversely proportional to output
shaft speed.

Motor characteristics are frequently given as
two points on this graph:

! stall torque: the point on at which the
torque is maximum, but the shaft is not
rotating.

! no load speed: maximum output speed of
the motor.
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DC Motor with Load

ia(t)
V(t)

Ra

θm(t)

θL(t)

Fixed
f eld

N1

N2DaJa JL
DL

+

–

ea(t)
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DC Motor Model

for a DC motor, mechanical and electrical equations are:

V = R i + L
di

dt
+ ea (1)

eb = Kt ω (2)

T = Kt i = Jm
dω

dt
+ Dm ω (3)

T motor torque
Kt torque constant
i current,
V supplied voltage,
ω rotor speed,
eb back-emf (eb = Ke ω),
R, L resistance and induction

For a fixed voltage, torque–speed curves are derived from (1) & (3):

T =
kt
R

(V − Kt ω) =
kt
R

V − k2
mω

Km = kt/
√
R is the motor constant, [numerically, kt = ke ]

slope of the torque–speed curves is −K 2
m

voltage-controlled DC motor has inherent damping in its mechanical behavior

torque increases in proportion to applied voltage and reduces as ω increases.

Tm

V1

2

Tstall

T
or
qu
e

Speed

ωno-load
ω

V
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DC Motor Model
Example

Example

Given the DC motor with load system and torque-speed curve, find the transfer function, θL(s)/V (s).

Tm

ea = 100 V

500

T
o

rq
u

e
(N

-m
)

50
Speed (rad/s)

ia(t)

ea(t)

Ra

θm(t)

Fixed

field

θL(t)

N1 = 100

N2 = 1000
Ja = 5 kg-m2

Da = 2 N-m s/rad

JL = 700 kg-m2

DL = 800 N-m s/rad

ωm

+

–
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DC Motor Model
Example

to get the transfer function, we combine Laplace transforms of (1) through (3) and simplifying:

θm(s)

V (s)
=

kt/(Ra Jm)

s
[

s + 1
Jm

(

Dm + Kt Kb

Ra

)]

total inertia and damping at motor armature:

Jm = Ja + JL

(

N1

N2

)2

= 5 + 700

(

1

10

)2

= 12

Dm = Da + DL

(

N1

N2

)2

= 2 + 800

(

1

10

)2

= 10

From the torque–speed curve:

Tstall = 500, ωno−load = 50, V = 100

ia(t)

ea(t)

Ra

θm(t)

Fixed

field

θL(t)

N1 = 100

Ja = 5 kg-m2

Da = 2 N-m s/rad
N2 = 1000

JL = 700 kg-m2

DL = 800 N-m s/rad

+

–

Tm

ea = 100 V

500

T
o
rq

u
e

(N
-m

)

50
Speed (rad/s)

ωm
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DC Motor Model
Example

Hence the electrical constants, Kt/Ra and Kb are:

Kt

Ra
=

Tstall

V
=

500

100
= 5, Kb =

V

ωno−load
=

100

50
= 2

Substituting system parameters into Eq.(5) yields:

θm(s)

V (s)
=

5/12

s
[

s + 1
12 (10 + 52)

] =
0.417

s(s + 1.667)

to find the final transfer function (from the load–side, i.e. θL/V (s)), we use the gear ratio,
N1/N2 = 1/10, hence we get:

θL(s)

V (s)
=

0.0417

s(s + 1.667)
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Electromechanical Systems
Example

Example

Given the combined translational and rotational system shown, find the transfer function,
G (s) = X (s)/T (s).

D3

J2Radius = r

K1 Ideal
gear 1:1

K2

M

fv

J1 J3

T(t)

x(t)
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Electromechanical Systems
Example

Writing the equations of motion,

(J1 s
2 + K1) θ1(s)− K1 θ2(s) = T (s)

−K1 θ1(s) + (J2 s
2 + D3 s + K1) θ2(s) + F (s) r − D3 s θ3(s) = 0

−D3 s θ2(s) + (J2 s
2 + D3 s) θ3(s) = 0

where F (s) is the opposing force on J2 due to the translational member and r is the radius of J2.

for the translational member,

F (s) = (M s2 + fv s + K2)X (s) = (M s2 + fv s + K2) r θ(s)
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Electromechanical Systems
Example

Substituting F (s) back into the second equation of motion:

(J1 s
2 + K1) θ1(s)− K1 θ2(s) = T (s)

−K1 θ1(s) +
[

(J2 +M r2) s2 + (D3 + fv r2) s + (K1 + K2 r
2)
]

θ2(s)− D3 s θ3(s) = 0

−D3 s θ2(s) + (J2 s
2 + D3 s) θ3(s) = 0

Note: the translational components were reflected as equivalent rotational components by the
square of the radius.

Solving for θ2(s),

θ2(s) =
K1(J3s2 + D3s)T (s)

∆
∆ is the determinant formed from the coefficients of the three equations of motion.

Since X (s) = rθ2(s), then:
X (s)

T (s)
=

r K1(J3 s2 + D3 s)

∆
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Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.

Mohammed Nour A. Ahmed
mnahmed@eng.zu.edu.eg
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