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Lecture: 3
Mathematical Modeling of Physical Systems

@ Modeling of Electrical Systems
@ Modeling of Mechanical Systems

@ Modeling of Electromechanical Systems
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Mathematical Modeling of Physical Systems

Modeling

the process of representing the behavior of a real system by a collection of mathematical equations and
logic.

@ Models are cause-and-effect structures

» they accept external information and process it with their logic and equations to produce one or more
outputs.

» Parameter is a fixed-value unit of information

» Signal is a changing-unit of information

@ Models can be text-based programming or pictorial representations
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Types of Systems

e Static System: If a system does not change with time.
@ Dynamic System: if its current output depends on the past history and the present values of the
input variables.
y(t) =®u(r)], 0<7<t
@ Physical laws are used to predict the behavior (both static and dynamic) of systems.
» Electrical engineering relies on Ohm and Kirchoff laws
» Mechanical engineering on Newton laws
» Electromagnetics on Faraday and Lenz laws
» Fluids on continuity and Bernoulli laws
e Example: The displacement x(t) of a a moving mass M due to an external force f(t) can be

modeled as:
x(1)
—
N0
—>
Force = Mass x Acceleration
d?x(t) M
f(t)y=Ma=M

L ML
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Modeling of Electrical Systems

Voltage-current, voltage-charge, and impedance relationships for basic electrical components

Component Voltage-current

Impedance Admittance
Current-voltage Voltage-charge Z(s) = V(s)/I(s) Y(s) =1(s)/V(s)
4| g 1 [t , dv(t) 1 1
v(t) = —/ i(t)dr i(ty==C_ v(t) =—=q(1) — Cs
Capacitor ClJo ® dt c Cs
; . 1 dq(t 1
—/I:/\/\/— v(t) = Ri(r) i(6) = 2 v(0) V(1) = R% R =G
esistor
_/m\_ di(t) . 1 ! d’q(1) 1
=] —= = =
s v(t) ar i(t) L/o v(t)dt v(it)=L T Ls e
v(t) = V (volts), i(t) — A (amps), g(t) — Q (coulombs), C — F (farads), R — Q (ohms), G — Q (mhos), L — H (henries).
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Modeling of Electrical Systems

Example

Example
Given the network, find the transfer function, V(1) C_r) L c ;; ve (1)
h(s)/V(s). (1) i(1) 7
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Modeling of Electrical Systems

Example

@ Laplace transform of circuit variables, assuming zero initial conditions is shown next.

@ summing voltages around each mesh:

Rih(s) + Ls [h(s) — k(s)] = V(s) Ry Vi)

Ls [h(s) — h(s)] + Rob(s) + élz(s) ~0
e

@ solving for k(s) gives:
LC s?

G(s) = 248) _
V(S) (Rl + RQ)LC s2 + (RlRQC + L)S + Ry
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Modeling of Mechanical Systems

Force-velocity, force-displacement, and impedance translational relationships for basic mechanical

components
Spring Viscous damper Mass
—I—» x(1) —— x(1) —1— x(?)
p— f(
Component 1o e M =10
K v
) . dv(t)
Force-velocity | f(r) = K [ v(r)dr f(o) = fov(0) f() dt
. B dx(1) d’x(1)
Force-displacement f(t) = Kx(1) fo)y=f, o f(t) = P
Impedence
K fos Ms?

Zu(s) = F(s)/X(s)
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Modeling of Mechanical Systems

Example

Example
a schematic diagram of an automobile suspension system is shown next.
A very simplified version of the suspension system is also given.

Assuming that the motion x; at point P is the input to the system and
the vertical motion x, of the body is the output, obtain the transfer

function X,(s)/Xi(s)

Center of mass

\. Auto body |

L L

*The motion of this system consists of a translational motion of the center of mass and a rotational motion about the

center of mass. Mathematical modeling of the complete system is quite complicated.
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Modeling of Mechanical Systems

Example

@ The equation of motion for the system is:
mXo(t) + b[xo(t) — x:(t)] + k [xo(t) — x;(t)] =0
e Taking the Laplace transform of the equation of motion?, we obtain:

ms? Xo(s) + bs[Xo(s) — Xi(s)] + k[Xo(s) — Xi(s)] = 0
ms® X,(s) + bsX,(s) + kX,(s) = bsX;(s) + kXo(s) — X;(s)
@ Hence the transfer function Xo(s)/Xi(s) is given by:

Xo(s) bs + k
Xi(s)  ms2+ bs+ k

dassuming zero initial conditions
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Modeling of Mechanical Systems

Example

Example J

Consider the two carriage train system shown. obtain the transfer function Xi(s)/F(s)

X2 X1
mp my
‘ k

_flj ——AMW—
b —_— f
_fII|_ —MW—
Z /c2 /7 7z 7 f Z .
1
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Modeling of Mechanical Systems

Example

@ The two carriage train is schematically represented as:

—> X) — X
@ Forces acting on carriages 1 and 2, respectively:
k
:1%:1 ::_- ZEX1 — X2; 1 igxl — X2; i zlx:l = g m; %_ m —f
2X2 X1 — X2 X1 — X2 2X2 = b
Q) Q)

(%) 1

e Taking Laplace transform and rearranging:

[m1s* + (b+ c1)s + k] Xi(s) — [bs + k] Xa(s) = F(s)
—[bs+ K] Xi(s) + [m2s® + (b+ c2)s + k] Xa(s) =0
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Modeling of Mechanical Systems

Example

@ Solving the previous two equations, gives transfer function (with F as input and Xj as output):

Xi(s) mys® + (b+ c)s + k

F(S) N mymos* 4+ m1(2b —+ 1+ C2)S3 + [k(m1 —+ m2) + b(Cl + C2) —+ C1C2] 52 + k(Cl + C2)S

@ Note: Transfer function is a frequency domain equation that gives the relationship between a specific
input to a specific output
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Modeling of Mechanical Systems

Example

Find the transfer function, X5(s)/F(s), for the system:

x1(?)

—T f V3 —

f0

Note that friction shown here is viscous friction. Thus, fv; and fv, are not Coulomb friction, but arise

because of a viscous interface.
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Modeling of Mechanical Systems

Rotational Mechanical System

Torque-angular velocity, torque-angular displacement, and impedance rotational relationships for
mechanical components

Torque-angular Torque-angular Impedence
Component velocity displacement Zy(s) = T(s)/6(s)
T(r) 6(t)
Spring
T(t) = K [jw(t)dt T(1) = K6(t) K
K

Viscous 7(7) 6 (1)

damper
p ( ( T(t) = Dow(t) T(t) = Dd?j—(tt) Ds
D

T(r) 6(1)

Inertia dw(t) dZQ(t) 5
J

T(t) — N-m (newton-meters), 6(¢) — rad (radians), w(f) — rad/s(radians/second), K — N-m/rad(newton-
meters/radian), D — N-m-s/rad (newton- meters-seconds/radian). J — kg-m?(kilograms-meters”> —
newton-meters-seconds?/radian).
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Modeling of Mechanical Systems

Rotational Mechanical System Example

Write the Laplace transform of the equations of motion for the system shown

Example J

210 T(1) 0,(1) 03(1)

SEDIIED F
K

D,
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Modeling of Mechanical Systems

Rotational Mechanical System Example

0,(1) (1) 0,(1) 05(1)

() 0 RO000MG) ) F@@Z}
D, K D

2

D5

(J152 + Dis + K) 61(s) — Kb(s) — 0 65(s) = T(s)
—K@l(S) + (J252 + D25 + K) 92(5) — D2503(5) =0
—0 01(s) — Dasbr(s) + (S35 + Ds3s + Das) 05(s) = 0
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Modeling of Mechanical Systems

Rotational Mechanical System Gears

@ gears allow to match the drive system and the load
@ a trade—off between speed and torque

@ mechanical impedances is reflected through gear trains by:
T 6, p,
<Number of teeth of gear on destination shaft)2 <

Number of teeth of gear on source shaft

Input
. . drive gear,
@ interaction between two gears: Gear1  Output
driven gear,
2 Gear 2
0 nn N T, 061 N 2> N5
b rn Ny T 6 Ny’ V4 Ny
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Modeling of Mechanical Systems

Rotational-Transitional System

@ with rack and pinion system, the rotational motion is transformed into transitional motion.

@ Relation between input rotational torque and output linear velocity$:

dw : :

Tin— Tour = JE +cw rotational equation
dv . :

F—cov= mE transitional equation

Tot=rF, w=v/r

@ manipulating the rotational and transitional equations, we get:

T,-,,:(C—rl—|—c2r)v—|-(1—|—mr>ﬂ

r

§8For simplicity, the spring effects are ignored
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Analogy Approach

quantity equivalent
mass M inductor M henries
viscous damper | f, resistor f, ohms
spring k capacitor 1/k farads
applied force f(t) || voltage source | f(t)
velocity v(t) || mesh current | v(t)

Flow Variable (FV) Potential Variable (PV)

Electrical Current Voltage
Mech. Transitional | Force Velocity
Mech. Rotational Torque Angular Velocity
Hydraulic Volumetric Flow Rate | Pressure
Pneumatic Mass Flow Rate Pressure
Thermal Heat Flow Rate Temperature
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Analogy Approach

@ Based on electrical analogies, we can derive the fundamental equations of systems in five disciplines
of engineering:
» Electrical, Mechanical, Electromagnetic, Fluid, and Thermal.

@ By using this analogy method to first derive the fundamental relationships in a system, the
equations then can be represented in block diagram form, allowing secondary and nonlinear effects

to be added.

» This two-step approach is especially useful when modeling large coupled systems.
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Electromechanical Systems

@ Combine electrical and mechanical processes.
@ Devices carrying out electrical operations using moving parts are known as electromechanical.

» Relays, Solenoids, Electric Motors, Electric Generators, Switches, etc.
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Electromechanical Systems
DC Motors

@ Speed control through variable voltage applied to the armature terminals
@ each motor has a specific Torque/Speed curve and Power curve.
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Electromechanical Systems
DC Motors

@ Torque is inversely proportional to output
shaft speed.

@ Motor characteristics are frequently given as
two points on this graph:

» stall torque: the point on at which the
torque is maximum, but the shaft is not
rotating.

» no load speed: maximum output speed of
the motor.
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DC Motor with Load
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DC Motor Model

e for a DC motor, mechanical and electrical equations are:

% R'—i—Ldi—i—e (1) ;
= | —_— P .t
dt Iv
eb:KtCU (2) w
dw .

T KtI—J d—+me (3) ,

@ For a fixed voltage, torque—speed curves are derived from (1) & (3):

k
(v K: w) = fv k2 w
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slope of the torque—speed curves is —K?2,
voltage-controlled DC motor has inherent damping in its mechanical behavior
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torque constant
current,

supplied voltage,

rotor speed,

back-emf (&) = Ke w),
resistance and induction

m

Torque

torque increases in proportion to applied voltage and reduces as w increases.



DC Motor Model

Example

Example

Given the DC motor with load system and torque-speed curve, find the transfer function, 6,(s)/V/(s)

Fixed
field

6,,(1)

Rll
N, =100
ealt) )
1)
G L)

N, = 1000

J,=5 kg-m? «Q@ J; =700 kg-m? >—|:
D, =2 N-m s/rad

Dy =800 N-m s/rad
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DC Motor Model

Example

@ to get the transfer function, we combine Laplace transforms of (1) through (3) and simplifying:

Fixed

Om(s) _ ki /(RaJm) field
SERSECERD)

On(®)
Ny =100

61.(1)

o total inertia and damping at motor armature: Jo=Ske-m? ’ |<%

Ny 2 1\? De=2Nm 024 1000 Dy, =800 N-m s/rad

N-

00

O
3
|
O
L
+
o
AS
A/~
|3
~
N
I
N
_|_
o'
S
S
/?
~_
N
|
o
o

@ From the torque—speed curve:
Tstan = 500, Wno—Joad = 50, V =100

Torque (N-m)

Speed (rad/s)
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DC Motor Model

Example

@ Hence the electrical constants, K;/R, and K}, are:

Kt Tstall 500 4 100
Ra vV 100 ’ Who— load 50

@ Substituting system parameters into Eq.(5) yields:

Om(s) 5/12 0.417

V(s) s[s+2&(10+52)] s(s+1.667)

@ to find the final transfer function (from the load-side, i.e. 8,/V/(s)), we use the gear ratio,
N1/N, = 1/10, hence we get:
6u(s)  0.0417

V(s)  s(s+1.667)
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Electromechanical Systems

Example

Example

Given the combined translational and rotational system shown, find the transfer function,
G(s) = X(s)/T(s).
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Electromechanical Systems

Example

@ Writing the equations of motion,

(Jl S2 + Kl) 91(5) — K; 62(5) = T(S)
— Ky 01(s) + (2 5> + D3 s+ K1) 02(s) + F(s) r — D3 s 63(s) =0
—Ds s 92(5) + (J2 s? + D3 S) 93(5) =0

where F(s) is the opposing force on J, due to the translational member and r is the radius of Js.

@ for the translational member,

F(s)=(Ms>+f, s+ K)X(s) = (M s>+ £, s+ K2) r 6(s)
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Electromechanical Systems

Example

@ Substituting F(s) back into the second equation of motion:

(L1 82 + K1) 01(s) — Ky B2(s) = T(s)
—Ki 01(s) + [(Jo + M r?) s> + (D3 + f, r*) s + (Ki + Kz r?)] 62(s) — D3 s 03(s) = 0
—D3 S 92(5) + (J2 S2 + D3 S) 93(5) =0

Note: the translational components were reflected as equivalent rotational components by the
square of the radius.

@ Solving for 65(s),

92(5) _ Kl(J352 +AD3S) T(S)
A is the determinant formed from the coefficients of the three equations of motion.

@ Since X(s) = rby(s), then:

X(S) _r Kl(./3 s+ D3 S)

T(s) A

Mohammed Ahmed (Asst. Prof. Dr.Ing.) Automatic Control Engineering 32/32



Thanks for your attention.

Questions?

Asst. Prof. Dr.Ing.
Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg
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