CSE302 Automatic Control Engineering

Lecture 2: Mathematical Modeling of Control Systems

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved.

Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Lecture: 2 Mathematical Modeling of Control Systems

- Mathematical Models
- Differential Equation Model
- Block Diagram Representation

Mathematical Models

Mathematical Model

A set of mathematical equations (e.g., differential equations) that describes the input-output behavior of a system.

• These models are useful for **simulation**, prediction/forecasting, design/performance evaluation, and **analysis and design** of control systems.

Lumped vs. Distributed Systems

- lumped system has a finite number of state variables
- distributed system has an infinite number of state variables

state variables

a set of variables whose values at any moment completely characterize the system

Mathematical Models

There are different types of lumped-parameter models. The mostly used:

- Differential equation model (for linear and nonlinear systems)
- Transfer function model (for linear time invariant systems)
- State space model (for linear and nonlinear, SISO, and MIMO systems)

Differential Equation Model

a time domain mathematical model of control systems.

• For linear systems, we can often represent the system dynamics through an *n*th order ordinary differential equation (ODE):

$$y^{(n)}(t) + a_1 y^{(n-1)}(t) + a_2 y^{(n-2)}(t) + \dots + a_{n-1} \dot{y}(t) + a_n y(t) = b_0 u^{(m)}(t) + b_1 u^{(n-1)}(t) + b_2 u(b-2)(t) + \dots + b_{n-1} \dot{u}(t) + b_m u(t)$$

- Input: u(t); Output: y(t), system parameters: a_1, \dots, a_n ; b_0, \dots, b_m
- The $y^{(k)}$ notation means we're taking the k^{th} derivative of y(t)
- system order is the order of the ODE
- Typically, m > n

Differential Equation Model

Example

Derive the model of the following series RLC circuit with input voltage applied to circuit v_i and voltage across the capacitor, v_o as output.

- Mesh equation: $v_i = Ri + L \frac{di}{dt} + v_o$
- Substituting with capacitor current $i = c \frac{dv_o}{dt}$

$$v_i = RC\frac{\mathrm{d}v_o}{\mathrm{d}t} + LC\frac{\mathrm{d}^2v_o}{\mathrm{d}t^2} + v_o \quad \Rightarrow \quad \frac{\mathrm{d}^2v_o}{\mathrm{d}t^2} + \left(\frac{R}{L}\right)\frac{\mathrm{d}v_o}{\mathrm{d}t} + \left(\frac{1}{LC}\right)v_o = \left(\frac{1}{LC}\right)v_i$$

• The above equation is a second order differential equation.

Transfer Function

the ratio of Laplace transform of output and Laplace transform of input by assuming all the initial conditions are zero.

$$\begin{aligned} \mathscr{L}{u(t)} &= U(s), \quad \mathscr{L}{y(t)} = Y(s), \quad \mathscr{L}: \text{ is the Laplace operator} \\ \text{Transfer Function} &= \frac{\mathscr{L}{y(t)}}{\mathscr{L}{x(t)}}\Big|_{IC=0} = \frac{Y(s)}{X(s)} \end{aligned}$$

• Given that ODE description, we can take the Laplace Transform:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

 denominator polynomial order > numerator polynomial order, transfer function is said to be proper. Otherwise improper

• the transfer function H(s) of the system is given as:

$$H(s) = \frac{Y(s)}{U(s)} = \frac{s^m + b_{m-1}s^{m-1} + \dots + b_0}{s^n + a_{n-1}s^{n-1} + \dots + a_0}$$

- s is a complex variable (complex frequency) and is given as: $s = \delta + j \omega$
- Roots of numerator are called the zeros
- Roots of the denominator are called the poles
- pole-zero plot:

Example

• Given:
$$H(s) = \frac{2s+1}{s^3-4s^2+6s-4}$$

- Zeros: z1 = -0.5
- Poles: solve s3 -4s2 +6s -4 = 0,
- use MATLAB roots command:

```
1 > poles = roots[1 -4 6 -4]

2 poles =

3 2,

4 1 + j, 1 - j
```

• Factored form:

$$H(s) = \frac{2s + 0.5}{(s - 2)(s - 1 - j)(s - 1 + j)}$$

Analyzing Generic Physical Systems

Seven-step algorithm:

- **(**) Identify dynamic variables, inputs (u), and system outputs (y)
- **2** Focus on one component, analyze the dynamics (physics) of this component
 - ► How? Use Newton's Equations, KVL, or thermodynamics laws, etc.
- After that, obtain an nth order ODE:

$$\sum_{i=1}^{n} \alpha_i \, y^{(i)}(t) = \sum_{j=1}^{m} \beta_j \, u^{(j)}(t)$$

- Take the Laplace transform of that ODE
- Ombine the equations to eliminate internal variables
- **o** Write the transfer function from input to output
- For a certain control U(s), find Y(s), then $y(t) = \mathcal{L}^{-1}{Y(s)}$

Examples/Quiz

- For the following transfer functions, determine
 - Whether the transfer function is proper or improper
 - Poles of the system
 - zeros of the system
 - Order of the system

a)
$$G(s) = \frac{s+3}{s(s+2)}$$

b) $G(s) = \frac{s}{s(s+1)(s+2)(s+3)}$
c) $G(s) = \frac{(s+3)^2}{s(s^2+10)}$
d) $G(s) = \frac{s^2(s+1)}{s(s+10)}$

	proper/impr.	Poles	zeros	Order
a)				
b)				
c)				
d)				

Block Diagram Representation of Control Systems

Introduction

Block Diagram

a shorthand pictorial representation of the cause-and-effect relationship of a system.

- the block usually contains a description of or the name of the element, gain, or the symbol for the mathematical operation to be performed on the input to yield the output.
- The arrows represent the direction of information or signal flow.

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Examples of Block Diagrams

Temperature Control System

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Automatic Control Engineering

Importance of Block Diagrams

- Graphical representation of interconnected systems are important
- A system may consist of multiple subsystems: the output of one may be the input to another, and so on
- Each subsystem is represented by a functional block, labeled with the corresponding transfer function
- Blocks are connected by arrows to indicate signal flow directions

Advantages:

- Easy for visualization purpose
- Can represent a class of similar systems
- Most importantly: can infer overall relationship between inputs and outputs, and hence analyze the system stability and performance

Block Diagram Building Blocks

Summing Point

- indicates the operations of addition and subtraction
- represents by a circle (with or without X inside) with the appropriate plus or minus sign associated with arrows into the circle.
- The output is the algebraic sum of the inputs.
- Any number of inputs may enter a summing point.

Block Diagram Building Blocks Takeoff Point

- used for signal branching to have the same signal or variable as input to other blocks
- This permits the signal to proceed unaltered along several different paths to several destinations.

Block Diagram Building Blocks

• Consider the following block diagram in which x_1, x_2, x_3 , are variables, and a_1, a_2 are transfer functions:

The output x_3 is calculated as:

$$x_3 = a_1 x_1 + a_2 x_2 + 5$$

Block Diagram Building Blocks Example/Quiz

• Draw the Block Diagrams of the following equations.

$$x_{2} = a_{1}\frac{dx_{1}}{dt} + \frac{1}{b}\int x_{1}dt$$
$$x_{3} = a_{1}\frac{d^{2}x_{1}}{dt^{2}} + 3\frac{dx_{1}}{dt} - bx_{1}$$

Important Definitions

Feedback Control System

- Tracking error: E(s) = R(s) B(s)
- Forward/Direct transfer function (FTF): $\frac{C(s)}{E(s)} = G(s)$
- Loop transfer function (LTF): $\frac{B(s)}{E(s)} = G(s)H(s)$
- Closed-loop transfer function (CLTF): $\frac{C(s)}{R(s)} = ??$

Important Definitions

Characteristic Equation

- The control ratio is the closed loop transfer function of the system.
- The denominator of closed loop transfer function determines the system **characteristic** equation as:

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 \pm G(s)H(s)}$$
$$1 \pm G(s)H(s) = 0$$

Reduction techniques

Transformation	Original Diagram	Equivalent Diagram	
1. Combining blocks in	$G_1(s)$ X_2 $G_2(s)$ X_3	X_1 G_1G_2 X_3	
2. Moving a summing X_1 point behind a block $-$	$\xrightarrow{+} \bigcirc \qquad \xrightarrow{G} \xrightarrow{X_1} \qquad \xrightarrow{X_2}$	$x_1 \rightarrow G \rightarrow X_2 \rightarrow X_3 \rightarrow G \rightarrow X_3 \rightarrow G \rightarrow X_3 \rightarrow G \rightarrow X_3 \rightarrow G \rightarrow $	
3. Moving a pickoff X_i point ahead of a block		$X_1 \longrightarrow G X_2 \rightarrow X_2$	

Block Diagram Transformations [Taken from Dorf & Bishop Textbook]

Reduction techniques

Transformation	Original Diagram	Equivalent Diagram	
 Moving a pickoff point behind a block 	X_1 G X_2	$X_1 \longrightarrow G \longrightarrow X_2 \rightarrow X_1 \longrightarrow G$	
5. Moving a summing X point ahead of a block X	a a a a a a a a a a	$\begin{array}{c} X_1 & + \\ & & \\ & + \\ & & \\ &$	
6. Eliminating a feedback loop $\frac{X_1}{X_1}$	$+$ G X_2	X_1 G X_2 $T \neq GH$	

Block Diagram Algebra Examples

- Find the CLTF utilizing the previous transformations
- Hint: use property 4 (see previous slide)
- Property 4: sliding a branch point past a function block

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Examples

Block Diagram Algebra Examples

- Can we use another property?
- Yes, we can use Property 5 (moving a summing point ahead of a block)

Examples

Automatic Control Engineering

Examples

- Solution: First, let's move H_2 behind block G_4 so that we can isolate the $G_3 G_4 H_1$ feedback loop
- Again, we use Property 4 to get:

Examples

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.