CSE302 Automatic Control Engineering

Lecture 1: Introduction

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

About Me

Mohammed Nour Abdelgwad Ahmed

- Asst.Prof.Dr.Ing. at Computer and Systems Engineering Dept., Faculty of Engineering, Zagazig University.
- Researcher at DFKI-Robotic Innovation Center, Bremen, Germany.
- Research Interests: Robotics, Control, Modelling and Simulation, and Mechatronics

- web: https://mnourgwad.github.io, www.mnahmed.faculty.zu.edu.eg
- email: mnahmed@eng.zu.edu.eg
- Office: Electric Eng. Building (27), 3rd Floor, Room: 27325
- Office Hours: each Sunday and Tuesday after 14:00 o'clock

Some robots I worked with

SpaceClimber

CREX

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Some robots I worked with

LIMES (Mantis)

Some robots I worked with

AILA

Mr.SemProm

Some robots I worked with

MIRA

The Course

CSE302 Automatic Control Engineering

https://en.wikipedia.org/wiki/Mechatronics

The Course

CSE302 Automatic Control Engineering

The course introduces fundamental concepts in the **theory, analysis and design of control systems**. It enables you to:

- Knowledge and understanding
 - Model and analyze control systems
 - Evaluate the performance of control systems
- Professional and practical skills
 - Design and simulate industrial and practical systems
 - Improve performances of control systems
- General and transferable skills
 - Understand the requirements and operations of control systems
 - Design and tuning techniques for performance improvement

CSE302 Automatic Control Engineering

Topics to be covered (subject to change!)

- System Modeling
 - Transfer Function
 - Block Diagrams
 - State space
 - Signal Flow Graphs
- System Analysis
 - Time Domain Analysis
 - Frequency Domain Analysis (Bode Plots, Nyquist Plots)
 - Root Locus
- System Design
 - Compensation Techniques
 - PID Control

The Course

CSE302 Automatic Control Engineering

Assessment Methods

Method	Time	Weight
Assignments, Quizzes, · · ·	weekly	5%
Midterm	week 6	15%
Project (Project Report + Demo)	week 10	10%
Final	week 12	70%

Recommended Textbooks

- Katsuhiko **Ogata**, *Modern Control Engineering* (5th ed.), Upper Saddle River, 2011.
- Richard C. Dorf and Robert Bishop, Modern Control Systems, Addison-Wesley, 2004.

Relevant Websites

• Lecture slides, notes and others on course webpage: https://mnourgwad.github.io/CSE302

Teaching Assistant

• Eng. Shimaa Mohamed eng.shimaa2003@yahoo.com

Prerequisites

- Mild linear algebra
- Multivariable calculus
- Integration and differentiation
- Laplace transforms
- MATLAB will be required for homework assignments and course projects
 - Most answers to homework questions can be verified via MATLAB/Simulink
 - a short MATLAB Basics tutorial can be found here: https://mnourgwad.github.io/MEC301/lectures/MATLABbasics.pdf
 - for Simulink, a tutorial is found here: https://mnourgwad.github.io/MEC301/lectures/simulinkTutorial.pdf
 - a very useful tutorial on control, MATLAB, and Simulink can be found at: http://ctms.engin.umich.edu/CTMS/index.php?aux=Basics_Matlab

Sign up to the System

In your smart phone:

- connect to WiFi network Nour
- e password: 12345678

in phone Internet browser:

• navigate to the address: **192.168.1.2**

Mohammed Ahmed (Asst. Prof. Dr.Ing.)

Automatic Control Engineering

Sign up to the System

our Minimal Attendance and Quizzing System (oMAQS) -- Create your account

User is successfully registered.

You can now login with: username: passwored: as provided :)

Go to login

Already have an account? Log In "s::1 c::1 m d16/09/2017 121:39:41""; ?>

Sign up to the System

Lecture: 1 Introduction

- Basic Definitions
- Linear control Systems
 - Major Components
 - Basic Operations
 - Advantages and Disadvantages
- Course Roadmap

Control systems

What is a control system?

- Output y(t)
- May be scalar or vector
- Usually the user specifies a desired form
- Sometimes it can be measured, others it can not

- System: An interconnection of elements and devices for a desired purpose and/or objective.
- **Process**: The device, plant, or system under control. The input and output relationship represents the cause-and-effect relationship of the process.

What is a control system?

Control system

mechanical, optical, or electronic device, or set of devices, that manages, commands, directs or regulates the behavior of other devices or systems **to maintain a desired output**.

- Control system: An interconnection of components forming a system configuration that will provide a desired response
- the **purpose of control** is to ensure that output waveform resembles the waveform desired by the user, despite the system dynamics and disturbances by noise

What is a control system?

Control systems vary in complexity, size, type, but · · · they are everywhere

- In this room, in your tablets and phones
- In traffic lights, robots, the Internet, sports, music
- In your kitchen: fridge, toaster, coffee maker
- Hoverboards and Segways
- Most complex control system: the human body

Control systems

What is a control system?

Hard Disk Drive : Speed Control and Head-Disk Tracking

Brief History of Control

Fly-Ball Governor

invented by James Watt, 1769¹

- The first modern controller
- Regulated speed of steam engine
- Reduced effects of variances in load
- Propelled industrial revolution

¹Stuart Bennett, A Brief History of Automatic Control, IEEE Control Systems, V16, Issue:3, P17–25, IEEE, 1996.

Classification of control systems

1. According to structure

Open-loop control

- output has no effect on control action.
- it is neither measured nor fedback for comparison with input.
- For each reference input, there corresponds a fixed operating conditions;
- accuracy of the system depends on calibration.
- in presence of disturbances, the system will not perform the desired task.

Closed-loop control

often referred to as **feedback** control systems.

- idea of feedback:

 (i) Compare actual output with expected value;
 (ii) Take actions based on the difference (error).
- This seemingly simple idea is tremendously powerful.
- Feedback is a key idea in control discipline.

Composition control

 $\begin{array}{l} \mbox{Composition control system} = \\ \mbox{Open-loop} + \mbox{Closed-loop} \end{array}$

Classification of control systems

2. According to reference input

Constant-value control

- reference **input** (expected value) is a **constant** value
- controller works to keep output around the constant value, e.g., constant-temperature control, and liquid level control.

Servo/tracking control control

- reference input may be unknown or varying
- controller works to make output track the varying reference, e.g., automatic navigation systems on planes, satellite-tracking antennas

Programmed control

- The input changes according to a program
- controller works according to predefined command, e.g., numerical control machine

Classification of Control Systems

3. According to Structure

Two Control Strategies

Black–Box Strategy

- Learn by training
- No idea what processes are happening inside your system
- Disadvantage: cannot analyze
- Advantage: no need for a physical understanding

Omega Model-Based Strategy

- Build a mathematical model through equations
- Equations relate system inputs to outputs
- Advantages? Disadvantages?

Two **approaches** for control:

- Open loop control.
- Closed–loop (feedback) control.

Open-loop control

- Controller determines the plant input without looking at output
- adjust input to keep the output as close as possible to some desired value.
- Advantage: only used if one has accurate modeling of the system
- However, because of the unknowns in the system model and the effects of external disturbances open-loop control is not accurate.
- Examples: washing machines, light switches, gas ovens

Closed-loop (Feedback) control

- measurements of plant output is used to modify its input.
- controller receives the error signal, then generates a suitable value of the plant input, hence closing the loop.
- Advantages: robust to external and internal disturbances
- Examples: air conditioners, refrigerators

Advantages of closed-loop control

- Remove (isolate or reject) the unwanted disturbance signal(s)
- Reduces sensitivity of output to variations in plant parameters.
 - plant model is not required to be exactly known.
- Can **stabilize** the system (if unstable)
 - Open-loop control can not be used in this case!
- Command Tracking: cause the output to track the reference input closely

Block diagram of a control system

structure, and the line guides for

the transfer route.

Basic concepts of a control system

Plant

a physical object to be controlled such as a mechanical device, a heating furnace, a chemical reactor or a spacecraft, a car, a missile.

Controlled variable

the variable controlled by a automatic control system , considering as a system output

Expected value

the desired value of controlled variable based on requirement, often it is used as the reference input

Basic concepts of a control system

Controller

an unit that can compute the required control signal.

Actuator

a mechanical device that takes energy, usually created by air, electricity, or liquid, and converts that into some kind of motion

Sensor

a device that measures a physical quantity and converts it into a signal which can be read by an observer or by an instrument.

Disturbance

the unexpected factors disturbing the normal functional relationship between the controlling and controlled parameter variations.

Course Content

System Modeling

- How to construct the math behind the physics?
- From basic laws of physics to differential equations
- Ontrol System Analysis
 - Given the math depicting the physics, can I analyze the system?
 - Can I change my input to have better system performance?
- Ontrol System Design
 - ► Can I design a subsystem, a controller, so that my output follows a certain trend?
 - How good is this design? What if the math was inaccurate?

Course Roadmap

Modeling

Analysis

• Laplace Transforms

- Transfer Functions
- Solution of ODEs
- Modeling of Systems
- Block Diagrams
- Linearization

- 1st & 2nd Order Systems
- Time Response
- Transient & Steady State
- Frequency Response
- Bode Plots
- RH Criterion
- Stability Analysis

Root-Locus

Design

- Modern Control
- State-Space
- MIMO System Properties

Thanks for your attention. Questions?

Asst. Prof. Dr.Ing. Mohammed Nour A. Ahmed

mnahmed@eng.zu.edu.eg

https://mnourgwad.github.io

Robotics Research Interest Group (zuR²IG) Zagazig University | Faculty of Engineering | Computer and Systems Engineering Department | Zagazig, Egypt

Copyright ©2018 Dr.Ing. Mohammed Nour Abdelgwad Ahmed as part of the course work and learning material. All Rights Reserved. Where otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.