Contents

function plotting

figure
f='7*x^3-4*x^2+3*x+4';
fplot(f,[-3,3]);

Symbolic Processing

Create symbolic variables

syms x y a b c n

Symbolic expansion and simplification of polynomials and elementary functions

expand((x^2+5)* (y^3+2))
simplify((x^3+2*x^2+5*x+10)/(x^2+5))
 
ans =
 
x^2*y^3 + 2*x^2 + 5*y^3 + 10
 
 
ans =
 
x + 2
 

Create symbolic polynomial from vector of coefficients and vice versa

poly2sym([2,6,4])
sym2poly(9*x^2 - 4*x + 5)
 
ans =
 
2*x^2 + 6*x + 4
 

ans =

          9.00         -4.00          5.00

Symbolic substitution

E=a*sin(b); subs(E,{a,b},{x,2})

E=x^2+6*x+7; subs(E,x,2)
 
ans =
 
x*sin(2)
 
 
ans =
 
23
 

Equations and systems Symbolic solver

eq1='x+5=0'; solve(eq1)

solve(b^2+8*c+2*b,b)

eq1='6*x+2*y=14'; eq2='3*x+7*y=31';
[x,y]=solve(eq1,eq2)

syms x y
s=solve((x-3)^2+(y-5)^2-4, (x-6)^2+(y-3)^2-9);
s.x
s.y

figure;
theta = 0:0.005:2*pi;
hold on;
plot(3+2*cos(theta),5+2*sin(theta),'r');
plot(6+3*cos(theta),3+3*sin(theta),'b');
plot(s.x,s.y,'k*');
txt1 = ['   (' char(s.x(1)) ', ' char(s.y(1)) ')'];
text(s.x(1),s.y(1),txt1)
txt1 = ['   (' char(s.x(2)) ', ' char(s.y(2)) ')'];
text(s.x(2),s.y(2),txt1)
axis equal; box on;
grid
 
ans =
 
-5
 
ans =
 
 - (1 - 8*c)^(1/2) - 1
   (1 - 8*c)^(1/2) - 1
 
x =
 
1
 
 
y =
 
4
 
 
ans =
 
     3
 63/13
 
 
ans =
 
     3
 75/13
 

Symbolic Differences and Approximate Derivatives

syms x n
f = diff(x^n)
 
f =
 
n*x^(n - 1)
 

Definite and indefinite integrals

syms x y
f = int(x^2,2,5)
f = int(x^2)
 
f =
 
39
 
 
f =
 
x^3/3